Abstract
We consider the problem of extracting morphology of a terrain represented as a Triangulated Irregular Network (TIN). We propose a new algorithm and compare it with representative algorithms of the main approaches existing in the literature to this problem. The new algorithm has the advantage of being simple, using only comparisons (and no floating-point computations), and of being suitable for an extension to higher dimensions. Our experiments consider both real data and artificial test data. We evaluate the difference in the results produced on the same terrain data, as well as the impact of resolution level on such a difference, by considering representations of the same terrain at different resolutions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bajaj, C.L., Pascucci, V., Shikore, D.R.: Visualization of scalar topology for structural enhancement. In: Proceedings IEEE Visualization, pp. 51–58. IEEE Computer Society, Los Alamitos (1998)
Bajaj, C.L., Shikore, D.R.: Topology preserving data simplification with error bounds. Computers and Graphics 22(1), 3–12 (1998)
Bremer, P.-T., Edelsbrunner, H., Hamann, B., Pascucci, V.: A multi-resolution data structure for two-dimensional Morse functions. In: Turk, G., van Wijk, J., Moorhead, R. (eds.) Proceedings IEEE Visualization, pp. 139–146. IEEE Computer Society, Los Alamitos (2003)
Comic, L., De Floriani, L., Papaleo, L.: Morse-Smale decomposition for modeling terrain knowledge. In: Cohn, A., Mark, D. (eds.) COSIT 2005. LNCS, vol. 3693, pp. 426–444. Springer, Heidelberg (2005)
Danovaro, E., De Floriani, L., Magillo, P., Mesmoudi, M.M., Puppo, E.: Morphology-driven simplification and multi-resolution modeling of terrains. In: Hoel, E., Rigaux, P. (eds.) Proceedings ACM-GIS - International Symposium on Advances in Geographic Information Systems, pp. 63–70. ACM Press, New York (2003)
Danovaro, E., De Floriani, L., Mesmoudi, M.M.: Topological analysis and characterization of discrete scalar fields. In: Asano, T., Klette, R., Ronse, C. (eds.) Geometry, Morphology, and Computational Imaging. LNCS, vol. 2616, pp. 386–402. Springer, Heidelberg (2003b)
Edelsbrunner, H., Harer, J., Zomorodian, A.: Hierarchical Morse complexes for piecewise linear 2-manifolds. In: Proceedings ACM Symposium on Computational Geometry, pp. 70–79. ACM Press, New York (2001)
Mangan, A., Whitaker, R.: Partitioning 3D surface meshes using watershed segmentation. IEEE Transaction on Visualization and Computer Graphics 5(4), 308–321 (1999)
Meyer, F.: Topographic distance and watershed lines. Signal Processing 38, 113–125 (1994)
Pascucci, V.: Topology diagrams of scalar fields in scientific visualization. In: Rana, S. (ed.) Topological Data Structures for Surfaces, pp. 121–129. John Wiley and Sons Ltd., Chichester (2004)
Pfaltz, J.L.: Surface networks. Geographical Analysis 8, 77–93 (1976)
Roerdink, J., Meijster, A.: The watershed transform: definitions, algorithms, and parallelization strategies. Fundamenta Informaticae 41, 187–228 (2000)
Schneider, B.: Extraction of hierarchical surface networks from bilinear surface patches. Geographical Analysis 37, 244–263 (2005)
Schneider, B., Wood, J.: Construction of metric surface networks from raster-based DEMs. In: Rana, S. (ed.) Topological Data Structures for Surfaces. John Wiley and Sons Ltd., Chichester (2004)
Smale, S.: Morse inequalities for a dynamical system. Bulletin of American Mathematical Society 66, 43–49 (1960)
Stoev, S.L., Strasser, W.: Extracting regions of interest applying a local watershed transformation. In: Proceedings IEEE Visualization, pp. 21–28. IEEE Computer Society, Los Alamitos (2000)
Takahashi, S., Ikeda, T., Kunii, T.L., Ueda, M.: Algorithms for extracting correct critical points and constructing topological graphs from discrete geographic elevation data. Computer Graphics Forum 14(3), 181–192 (1995)
Vincent, L., Soille, P.: Watershed in digital spaces: an efficient algorithm based on immersion simulation. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(6), 583–598 (1991)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Magillo, P., Danovaro, E., De Floriani, L., Papaleo, L., Vitali, M. (2008). A Discrete Approach to Compute Terrain Morphology. In: Braz, J., Ranchordas, A., Araújo, H.J., Pereira, J.M. (eds) Computer Vision and Computer Graphics. Theory and Applications. VISIGRAPP 2007. Communications in Computer and Information Science, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89682-1_2
Download citation
DOI: https://doi.org/10.1007/978-3-540-89682-1_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-89681-4
Online ISBN: 978-3-540-89682-1
eBook Packages: Computer ScienceComputer Science (R0)