Nothing Special   »   [go: up one dir, main page]

Skip to main content

Merging Active Contours

  • Conference paper
Advances in Visual Computing (ISVC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5359))

Included in the following conference series:

  • 1553 Accesses

Abstract

In current active contour image segmentation methods, the number of regions is assumed to be known beforehand. It is related directly to a fixed number of active curves. How to allow it to vary is an important question which has been generally avoided. This study investigates a segmentation prior related to regions area to allow the number of regions to vary automatically during curve evolution, thereby optimizing the objective functional implicitly with respect to the number of regions. The obtained evolution equations show that the proposed prior can cause some curves to disappear while other curves expand, thereby leading to a region merging by curve evolution, although not in the sense of the traditional one-step merging of two regions. We give a statistical interpretation to the coefficient of this prior to balance its effect systematically against the other functional terms. We show the validity and efficiency of the method by testing on real images of intensity. A comparison demonstrates the advantages of the proposed method over the region-competition algorithm in regard to the optimal number of regions and computational load.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rousson, M., Paragios, N.: Prior Knowledge, Level Set Representations and Visual Grouping. Int. J. of Computer Vision 76, 231–243 (2008)

    Article  Google Scholar 

  2. Cremers, D., Rousson, M., Deriche, R.: A Review of Statistical Approaches to Level Set Segmentation: Integrating Color, Texture, Motion and Shape. Int. J. of Computer Vision 62, 249–265 (2007)

    Article  Google Scholar 

  3. Ben Ayed, I., Hennane, N., Mitiche, A.: Unsupervised Variational Image Segmentation/Classification using a Weibull Observation Model. IEEE Trans. on Image Processing 15, 3431–3439 (2006)

    Article  Google Scholar 

  4. Ben Ayed, I., Mitiche, A., Belhadj, Z.: Polarimetric Image Segmentation via Maximum Likelihood Approximation and Efficient Multiphase Level Sets. IEEE Trans. on Pattern Anal. and Machine Intell. 28, 1493–1500 (2006)

    Article  Google Scholar 

  5. Mansouri, A.-R., Mitiche, A., Vazquez, C.: Multiregion competition: A Level Set extension of Region Competition to Multiple Region Image Partitioning. Computer Vision and Image Understanding 101(3), 137–150 (2006)

    Article  Google Scholar 

  6. Vese, L.A., Chan, T.F.: A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. Int. J. of Computer Vision 50, 271–293 (2002)

    Article  MATH  Google Scholar 

  7. Chan, T.F., Vese, L.A.: Active Contours without Edges. IEEE Transactions on Image Processing 10, 266–277 (2001)

    Article  MATH  Google Scholar 

  8. Samson, C., Blanc-Féraud, L., Aubert, G., Zerubia, J.: A Level Set Model for Image Classification. Int. J. of Computer Vision 40, 187–197 (2000)

    Article  MATH  Google Scholar 

  9. Brox, T., Weickert, J.: Level Set Segmentation With Multiple Regions. IEEE Trans. on Image Processing 15, 3213–3218 (2006)

    Article  Google Scholar 

  10. Kadir, T., Brady, M.: Unsupervised non-parametric region segmentation using level sets. In: Proc. Int. Conf. on Computer Vision, pp. 1267–1274 (2003)

    Google Scholar 

  11. Zhu, S.C., Yuille, A.: Region Competition: Unifying Snakes, Region Growing, and Bayes /MDL for Multiband Image Segmentation. IEEE Trans. on Pattern Anal. and Machine Intell. 18, 884–900 (1996)

    Article  Google Scholar 

  12. Martin, P., Réfrégier, P., Goudail, F., Guérault, F.: Influence of the Noise Model on Level Set Active Contour Segmentation. IEEE Trans. on Pattern Anal. and Machine Intell. 26, 799–803 (2004)

    Article  Google Scholar 

  13. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley Interscience, Hoboken (2000)

    MATH  Google Scholar 

  14. Sethian, J.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  15. Nock, R., Nielsen, F.: Statistical Region Merging. IEEE Trans. on Pattern Anal. and Machine Intell. 26, 1452–1458 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ben Ayed, I., Mitiche, A. (2008). Merging Active Contours. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2008. Lecture Notes in Computer Science, vol 5359. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89646-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89646-3_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89645-6

  • Online ISBN: 978-3-540-89646-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics