Nothing Special   »   [go: up one dir, main page]

Skip to main content

Multi-dimensional Scale Saliency Feature Extraction Based on Entropic Graphs

  • Conference paper
Advances in Visual Computing (ISVC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5359))

Included in the following conference series:

Abstract

In this paper we present a multi-dimensional version of the Kadir and Brady scale saliency feature extractor, based on Entropic Graphs and Rényi alpha-entropy estimation. The original Kadir and Brady algorithm is conditioned by the curse of dimensionality when estimating entropy from multi-dimensional data like RGB intensity values. Our approach naturally allows to increase dimensionality, being its computation time slightly affected by the number of dimensions. Our computation time experiments, based on hyperspectral images composed of 31 bands, demonstrate that our approach can be applied to computer vision fields, i.e. hyperspectral or satellite imaging, that can not be solved by means of the original algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Gool, L.V.: A comparison of affine region detectors. International Journal on Computer Vision 65, 43–72 (2005)

    Article  Google Scholar 

  2. Park, S.J., Shin, J.K., Lee, M.: Biologically inspired saliency map model for bottom-up visual attention. In: Biologically Motivated Computer Vision: Second International Workshop, Tübingen, Germany, pp. 418–426 (2002)

    Google Scholar 

  3. van de Weijer, J., Gevers, T.: Boosting saliency in color image features. In: IEEE Conference on Computer Vision and Pattern Recognition, San Diego, USA, pp. 365–372 (2005)

    Google Scholar 

  4. Unnikrishnan, R., Hebert, M.: Extracting scale and illuminant invariant regions through color. In: 17th British Machine Vision Conference, Edinburgh, Scotland (2006)

    Google Scholar 

  5. Kadir, T., Brady, M.: Saliency, scale and image description. International Journal of Computer Vision 45, 83–105 (2001)

    Article  MATH  Google Scholar 

  6. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis & Machine Intelligence 27, 1615–1630 (2005)

    Article  Google Scholar 

  7. Newman, P., Cole, D., Ho, K.: Outdoor slam using visual appearance and laser ranging. In: IEEE International Conference on Robotics and Automation, Florida, USA, pp. 1180–1187 (2006)

    Google Scholar 

  8. Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised scale-invariant learning. In: IEEE Conference on Computer Vision and Pattern Recognition, Wisconsin, USA, pp. 261–264 (2003)

    Google Scholar 

  9. Peñalver, A., Escolano, F., Sáez, J.M.: Ebem: An entropy-based em algorithm for gaussian mixture models. In: 18th International Conference on Pattern Recognition, Hong Kong, August 20-24, vol. (2), pp. 451–455 (2006)

    Google Scholar 

  10. Neemuchwala, H., Hero, A., Zabuawala, S., Carson, P.: Image registration methods in high-dimensional space. International Journal of Imaging Systems and Technology 16, 130–145 (2006)

    Article  Google Scholar 

  11. Hero, A.O., Michel, O.: Applications of spanning entropic graphs. IEEE Signal Processing Magazine 19, 85–95 (2002)

    Article  Google Scholar 

  12. Gilles, S.: Robust Description and Matching of Images. PhD thesis, University of Oxford (1998)

    Google Scholar 

  13. Kadir, T., Zisserman, A., Brady, M.: An affine invariant salient region detector. In: 8th European Conference on Computer Vision, Prague, Czech Republic, May 11-14, vol. (1), pp. 228–241 (2004)

    Google Scholar 

  14. Kadir, T., Boukerroui, D., Brady, M.: An analysis of the scale saliency algorithm. Technical report, University of Oxford (2003)

    Google Scholar 

  15. Neemuchwala, H., Hero, A., Carson, P.: Image registration methods in high-dimensional space. International Jounal of Imaging Systems and Technology 16, 130–145 (2006)

    Article  Google Scholar 

  16. Henze, N., Penrose, M.: On the multivariate runs test. Annals of statistics 27, 290–298 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Friedman, J.H., Rafsky, L.C.: Multivariate generalizations of the wald-wolfowitz and smirnov two-sample tests. Annals of statistics 7, 697–717 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bentley, J.L.: K-d trees for semidynamic point sets. In: 6th Annual ACM Symposium on Computational Geometry, California, USA, pp. 187–197 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Suau, P., Escolano, F. (2008). Multi-dimensional Scale Saliency Feature Extraction Based on Entropic Graphs. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2008. Lecture Notes in Computer Science, vol 5359. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89646-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89646-3_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89645-6

  • Online ISBN: 978-3-540-89646-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics