Nothing Special   »   [go: up one dir, main page]

Skip to main content

Iris Recognition: A Method to Segment Visible Wavelength Iris Images Acquired On-the-Move and At-a-Distance

  • Conference paper
Advances in Visual Computing (ISVC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5358))

Included in the following conference series:

Abstract

The dramatic growth in practical applications for iris biometrics has been accompanied by many important developments in the underlying algorithms and techniques. Among others, one of the most active research areas concerns about the development of iris recognition systems less constrained to users, either increasing the image acquisition distances or the required lighting conditions. The main point of this paper is to give a process suitable for the automatic segmentation of iris images captured at the visible wavelength, on-the-move and within a large range of image acquisition distances (between 4 and 8 meters). Our experiments were performed on images of the UBIRIS.v2 database and show the robustness of the proposed method to handle the types of non-ideal images resultant of the aforementioned less constrained image acquisition conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. National Institute of Standards and Technology: Iris challenge evaluation (2006), http://iris.nist.gov/ICE/

  2. Proença, H., Alexandre, L.A.: The NICE.I: Noisy Iris Challenge Evaluation, Part I. In: Proceedings of the IEEE First International Conference on Biometrics: Theory, Applications and Systems (BTAS 2007), Washington, pp. 27–29 (2007)

    Google Scholar 

  3. Wildes, R.P.: Iris recognition: an emerging biometric technology. Proceedings of the IEEE, U.S.A. 85(5), 1348–1363 (1997)

    Google Scholar 

  4. Daugman, J.G.: High confidence visual recognition of persons by a test of statistical independence. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(11), 1148–1161 (1993)

    Article  Google Scholar 

  5. Ross, A., Shah, S.: Segmenting non-ideal irises using geodesic active contours. In: Proceedings of the IEEE 2006 Biometric Symposium, U.S.A, pp. 1–6 (2006)

    Google Scholar 

  6. Daugman, J.G.: New methods in iris recognition. IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics 37(5), 1167–1175 (2007)

    Article  Google Scholar 

  7. Arvacheh, E., Tizhoosh, H.: A study on Segmentation and Normalization for Iris Recognition. Msc dissertation, University of Waterloo (2006)

    Google Scholar 

  8. Zuo, J., Kalka, N., Schmid, N.: A robust iris segmentation procedure for unconstrained subject presentation. In: Proceedings of the Biometric Consortium Conference, pp. 1–6 (2006)

    Google Scholar 

  9. Vatsa, M., Singh, R., Noore, A.: Improving iris recognition performance using segmentation, quality enhancement, match score fusion, and indexing. IEEE Transactions on Systems, Mans and Cybernetics - B 38(3) (2008)

    Google Scholar 

  10. Liu, X., Bowyer, K.W., Flynn, P.J.: Experiments with an improved iris segmentation algorithm. In: Proceedings of the Fourth IEEE Workshop on Automatic Identification Advanced Technologies, pp. 118–123 (2005)

    Google Scholar 

  11. Dobes, M., Martineka, J., Dobes, D.S.Z., Pospisil, J.: Human eye localization using the modified hough transform. Optik 117, 468–473 (2006)

    Article  Google Scholar 

  12. Basit, A., Javed, M.Y.: Iris localization via intensity gradient and recognition through bit planes. In: Proceedings of the International Conference on Machine Vision (ICMV 2007), pp. 23–28 (2007)

    Google Scholar 

  13. Viola, P., Jones, M.: Robust real-time face detection. International Journal of Computer Vision 57(2), 137–154 (2002)

    Article  Google Scholar 

  14. Proença, H., Filipe, S., Santos, R., Oliveira, J., Alexandre, L.A.: Toward covert iris recognition: A database of visible wavelength images captured on-the-move and at-a-distance. IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics (submitted, 2008)

    Google Scholar 

  15. Fletcher, R., Reeves, C.: Function minimization by conjugate gradients. Computer Journal 7, 149–154 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  16. Powell, M.: Restart procedures for the conjugate gradient method. Mathematical Programming 12, 241–254 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dennis, J., Schnabel, R.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, Englewood Cliffs (1983)

    MATH  Google Scholar 

  18. Battiti, R.: First and second order methods for learning: Between steepest descent and newton’s method. Neural Computation 4(2), 141–166 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Proença, H. (2008). Iris Recognition: A Method to Segment Visible Wavelength Iris Images Acquired On-the-Move and At-a-Distance. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2008. Lecture Notes in Computer Science, vol 5358. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89639-5_70

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89639-5_70

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89638-8

  • Online ISBN: 978-3-540-89639-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics