Nothing Special   »   [go: up one dir, main page]

Skip to main content

Weak βη-Normalization and Normalization by Evaluation for System F

  • Conference paper
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5330))

Abstract

A general version of the fundamental theorem for System F is presented which can be instantiated to obtain proofs of weak β- and βη-normalization and normalization by evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abel, A., Coquand, T., Dybjer, P.: Normalization by evaluation for Martin-Löf Type Theory with typed equality judgements. In: Proc. of the 22nd IEEE Symp. on Logic in Computer Science (LICS 2007), pp. 3–12. IEEE Computer Soc. Press, Los Alamitos (2007)

    Google Scholar 

  2. Abel, A., Coquand, T., Dybjer, P.: Verifying a semantic βη-conversion test for martin-löf type theory. In: Audebaud, P., Paulin-Mohring, C. (eds.) MPC 2008. LNCS, vol. 5133, pp. 29–56. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Altenkirch, T., Dybjer, P., Hofmann, M., Scott, P.J.: Normalization by evaluation for typed lambda calculus with coproducts. In: Proc. of the 16th IEEE Symp. on Logic in Computer Science (LICS 2001), pp. 303–310. IEEE Computer Soc. Press, Los Alamitos (2001)

    Google Scholar 

  4. Altenkirch, T., Hofmann, M., Streicher, T.: Reduction-free normalisation for a polymorphic system. In: Proc. of the 11th IEEE Symp. on Logic in Computer Science (LICS 1996), pp. 98–106. IEEE Computer Soc. Press, Los Alamitos (1996)

    Google Scholar 

  5. Altenkirch, T., Hofmann, M., Streicher, T.: Reduction-free normalisation for System F (1997), http://www.cs.nott.ac.uk/~txa/publ/f97.pdf

  6. Barendregt, H.: The Lambda Calculus: Its Syntax and Semantics. North Holland, Amsterdam (1984)

    MATH  Google Scholar 

  7. Berger, U., Schwichtenberg, H.: An inverse to the evaluation functional for typed λ-calculus. In: Proc. of the 6th IEEE Symp. on Logic in Computer Science (LICS 1991), pp. 203–211. IEEE Computer Soc. Press, Los Alamitos (1991)

    Google Scholar 

  8. Blanqui, F.: Definitions by rewriting in the calculus of constructions. Mathematical Structures in Computer Science 15, 37–92 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Blanqui, F., Jouannaud, J.-P., Strub, P.-Y.: Building decision procedures in the calculus of inductive constructions. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 328–342. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Chrząszcz, J., Walukiewicz-Chrząszcz, D.: Towards rewriting in coq. In: Comon-Lundh, H., Kirchner, C., Kirchner, H. (eds.) Jouannaud Festschrift. LNCS, vol. 4600, pp. 113–131. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Constable, R.: Team: Implementing Mathematics with the Nuprl Proof Development System. Prentice Hall, Englewood Cliffs (1986)

    Google Scholar 

  12. Danvy, O.: Type-directed partial evaluation. In: Hatcliff, J., Mogensen, T.Æ., Thiemann, P. (eds.) DIKU 1998. LNCS, vol. 1706, pp. 367–411. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  13. Debray, S.K., Warren, D.S.: Automatic mode inference for logic programs. Journal of Logic Programming 5, 207–229 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. Filinski, A.: A semantic account of type-directed partial evaluation. In: Nadathur, G. (ed.) PPDP 1999. LNCS, vol. 1702, pp. 378–395. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  15. Girard, J.-Y., Lafont, Y., Taylor, P.: Proofs and Types. Cambridge Tracts in Theoretical Computer Science, vol. 7. Cambridge University Press, Cambridge (1989)

    MATH  Google Scholar 

  16. INRIA: The Coq Proof Assistant, Version 8.1. INRIA (2007), http://coq.inria.fr/

  17. Jay, B.: Long βη normal forms and confluence. Technical Report ECS-LFCS-91-183, University of Edinburgh (1991)

    Google Scholar 

  18. Matthes, R.: Extensions of System F by Iteration and Primitive Recursion on Monotone Inductive Types. Ph.D. thesis, Ludwig-Maximilians-University (1998)

    Google Scholar 

  19. Norell, U.: Towards a practical programming language based on dependent type theory. Ph.D. thesis, Department of Computer Science and Engineering, Chalmers University of Technology, Göteborg, Sweden (2007)

    Google Scholar 

  20. Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)

    MATH  Google Scholar 

  21. Pollack, R.: The Theory of LEGO. Ph.D. thesis, University of Edinburgh (1994)

    Google Scholar 

  22. Streicher, T.: Semantics of Type Theory. Progress in Theoretical Computer Science. Birkhaeuser Verlag, Basel (1991)

    Book  MATH  Google Scholar 

  23. Vaux, L.: A type system with implicit types, English version of his mémoire de maîtrise (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Abel, A. (2008). Weak βη-Normalization and Normalization by Evaluation for System F. In: Cervesato, I., Veith, H., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2008. Lecture Notes in Computer Science(), vol 5330. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89439-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89439-1_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89438-4

  • Online ISBN: 978-3-540-89439-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics