Abstract
A general version of the fundamental theorem for System F is presented which can be instantiated to obtain proofs of weak β- and βη-normalization and normalization by evaluation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abel, A., Coquand, T., Dybjer, P.: Normalization by evaluation for Martin-Löf Type Theory with typed equality judgements. In: Proc. of the 22nd IEEE Symp. on Logic in Computer Science (LICS 2007), pp. 3–12. IEEE Computer Soc. Press, Los Alamitos (2007)
Abel, A., Coquand, T., Dybjer, P.: Verifying a semantic βη-conversion test for martin-löf type theory. In: Audebaud, P., Paulin-Mohring, C. (eds.) MPC 2008. LNCS, vol. 5133, pp. 29–56. Springer, Heidelberg (2008)
Altenkirch, T., Dybjer, P., Hofmann, M., Scott, P.J.: Normalization by evaluation for typed lambda calculus with coproducts. In: Proc. of the 16th IEEE Symp. on Logic in Computer Science (LICS 2001), pp. 303–310. IEEE Computer Soc. Press, Los Alamitos (2001)
Altenkirch, T., Hofmann, M., Streicher, T.: Reduction-free normalisation for a polymorphic system. In: Proc. of the 11th IEEE Symp. on Logic in Computer Science (LICS 1996), pp. 98–106. IEEE Computer Soc. Press, Los Alamitos (1996)
Altenkirch, T., Hofmann, M., Streicher, T.: Reduction-free normalisation for System F (1997), http://www.cs.nott.ac.uk/~txa/publ/f97.pdf
Barendregt, H.: The Lambda Calculus: Its Syntax and Semantics. North Holland, Amsterdam (1984)
Berger, U., Schwichtenberg, H.: An inverse to the evaluation functional for typed λ-calculus. In: Proc. of the 6th IEEE Symp. on Logic in Computer Science (LICS 1991), pp. 203–211. IEEE Computer Soc. Press, Los Alamitos (1991)
Blanqui, F.: Definitions by rewriting in the calculus of constructions. Mathematical Structures in Computer Science 15, 37–92 (2005)
Blanqui, F., Jouannaud, J.-P., Strub, P.-Y.: Building decision procedures in the calculus of inductive constructions. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 328–342. Springer, Heidelberg (2007)
Chrząszcz, J., Walukiewicz-Chrząszcz, D.: Towards rewriting in coq. In: Comon-Lundh, H., Kirchner, C., Kirchner, H. (eds.) Jouannaud Festschrift. LNCS, vol. 4600, pp. 113–131. Springer, Heidelberg (2007)
Constable, R.: Team: Implementing Mathematics with the Nuprl Proof Development System. Prentice Hall, Englewood Cliffs (1986)
Danvy, O.: Type-directed partial evaluation. In: Hatcliff, J., Mogensen, T.Æ., Thiemann, P. (eds.) DIKU 1998. LNCS, vol. 1706, pp. 367–411. Springer, Heidelberg (1999)
Debray, S.K., Warren, D.S.: Automatic mode inference for logic programs. Journal of Logic Programming 5, 207–229 (1988)
Filinski, A.: A semantic account of type-directed partial evaluation. In: Nadathur, G. (ed.) PPDP 1999. LNCS, vol. 1702, pp. 378–395. Springer, Heidelberg (1999)
Girard, J.-Y., Lafont, Y., Taylor, P.: Proofs and Types. Cambridge Tracts in Theoretical Computer Science, vol. 7. Cambridge University Press, Cambridge (1989)
INRIA: The Coq Proof Assistant, Version 8.1. INRIA (2007), http://coq.inria.fr/
Jay, B.: Long βη normal forms and confluence. Technical Report ECS-LFCS-91-183, University of Edinburgh (1991)
Matthes, R.: Extensions of System F by Iteration and Primitive Recursion on Monotone Inductive Types. Ph.D. thesis, Ludwig-Maximilians-University (1998)
Norell, U.: Towards a practical programming language based on dependent type theory. Ph.D. thesis, Department of Computer Science and Engineering, Chalmers University of Technology, Göteborg, Sweden (2007)
Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)
Pollack, R.: The Theory of LEGO. Ph.D. thesis, University of Edinburgh (1994)
Streicher, T.: Semantics of Type Theory. Progress in Theoretical Computer Science. Birkhaeuser Verlag, Basel (1991)
Vaux, L.: A type system with implicit types, English version of his mémoire de maîtrise (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Abel, A. (2008). Weak βη-Normalization and Normalization by Evaluation for System F. In: Cervesato, I., Veith, H., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2008. Lecture Notes in Computer Science(), vol 5330. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89439-1_35
Download citation
DOI: https://doi.org/10.1007/978-3-540-89439-1_35
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-89438-4
Online ISBN: 978-3-540-89439-1
eBook Packages: Computer ScienceComputer Science (R0)