Abstract
A practical quantum key distribution (QKD) protocol necessarily runs in finite time and, hence, only a finite amount of communication is exchanged. This is in contrast to most of the standard results on the security of QKD, which only hold in the limit where the number of transmitted signals approaches infinity. Here, we analyze the security of QKD under the realistic assumption that the amount of communication is finite. At the level of the general formalism, we present new results that help simplifying the actual implementation of QKD protocols: in particular, we show that symmetrization steps, which are required by certain security proofs (e.g., proofs based on de Finetti’s representation theorem), can be omitted in practical implementations. Also, we demonstrate how two-way reconciliation protocols can be taken into account in the security analysis. At the level of numerical estimates, we present the bounds with finite resources for “device-independent security” against collective attacks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Rev. Mod. Phys. 74, 145 (2002)
Dušek, M., Lütkenhaus, N., Hendrych, M.: Progress in Optics, Edt. E. Wolf, vol. 49, p. 381. Elsevier, Amsterdam (2007)
Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: arXiv:0802.4155v1
Shor, P.W., Preskill, J.: Phys. Rev. Lett. 85, 441 (2000)
Mayers, D.: Journal of the ACM 48, 351 (2001); and quant-ph/9802025
Lo, H.-K., Chau, H.F.: Science. 283, 2050 (1999)
Koashi, M.: quant-ph/0505108
Ben-Or, M.: Security of BB84 QKD Protocol, http://www.msri.org/publications/ln/msri/2002/quantumintro/ben-or/2/
Devetak, I., Winter, A.: Proc. R. Soc. Lond. A 461, 207 (2005)
Inamori, H., Lütkenhaus, N., Mayers, D.: Eur. J. Phys. D 41, 599 (2007) and quant-ph/0107017
König, R., Renner, R., Bariska, A., Maurer, U.: Phys. Rev. Lett. 98, 140502 (2007)
Renner, R., König, R.: Second Theory of Cryptography Conference TCC. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378. Springer, Heidelberg (2005)
Meyer, T., Kampermann, H., Kleinmann, M., Bruß, D.: Phys. Rev. A 74, 042340 (2006)
Lo, H.-K., Chau, H.F., Ardehali, M.: J. Cryptology. 18, 133 (2005) and quant-ph/9803007
Ma, X., Qi, B., Zhao, Y., Lo, H.-K.: Phys. Rev. A. 72, 012326 (2005)
Wang, X.-B.: Phys. Rev. Lett. 94, 230503 (2005)
Hayashi, M.: Phys. Rev. A 76, 012329 (2007)
Hasegawa, J., Hayashi, M., Hiroshima, T., Tanaka, A., Tomita, A.: arXiv:0705.3081
Renner, R.: Security of Quantum Key Distribution, PhD thesis, Diss. ETH No 16242, quant-ph/0512258
Scarani, V., Renner, R.: arXiv:0708.0709v1
Ben-Or, M., Horodecki, M., Leung, D.W., Mayers, D., Oppenheim, J.: Theory of Cryptography. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 386–406. Springer, Heidelberg (2005) (quant-ph/0409078)
Brassard, G., Salvail, L.: Advances in Cryptology - EUROCRYPT 1993. LNCS, vol. 765, pp. 410–423. Springer, Heidelberg (1994)
Renner, R.: Nature Physics 3, 645 (2007)
Bennett, C.H., Brassard, G.: Proceedings IEEE Int. Conf. on Computers, Systems and Signal Processing, Bangalore, India, pp. 175–179. IEEE, New York (1984)
Bennett, C.H., Brassard, G., Breidbart, S., Wiesner, S.: IBM Technical Disclosure Bulletin. 26, 4363 (1984)
Bruß, D.: Phys. Rev. Lett. 81, 3018 (1998)
Bechmann-Pasquinucci, H., Gisin, N.: Phys. Rev. A 59, 4238 (1999)
Gottesman, D., Lo, H.-K.: IEEE Trans. Inf. Theory 49, 457 (2003)
Kraus, B., Gisin, N., Renner, R.: Phys. Rev. Lett. 95, 080501 (2005); Renner, R., Gisin, N., Kraus, B.: Phys. Rev. A. 72, 012332 (2005)
Carter, J.L., Wegman, M.N.: Journal of Computer and System Sciences 18, 143 (1979)
Wegman, M.N., Carter, J.L.: Journal of Computer and System Sciences 22, 265 (1981)
Ekert, A.K.: Phys. Rev. Lett. 67, 661 (1991)
Acín, A., Massar, S., Pironio, S.: New J. Phys. 8, 126 (2006)
Acín, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Phys. Rev. Lett. 98, 230501 (2007)
Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: arXiv:0704.3253
Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Phys. Rev. Lett. 23, 880 (1969)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Scarani, V., Renner, R. (2008). Security Bounds for Quantum Cryptography with Finite Resources. In: Kawano, Y., Mosca, M. (eds) Theory of Quantum Computation, Communication, and Cryptography. TQC 2008. Lecture Notes in Computer Science, vol 5106. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89304-2_8
Download citation
DOI: https://doi.org/10.1007/978-3-540-89304-2_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-89303-5
Online ISBN: 978-3-540-89304-2
eBook Packages: Computer ScienceComputer Science (R0)