Abstract
This paper is devoted to polynomial-time approximations for the problems of finding a shortest common nonsubsequence and a shortest common supersequence of given strings. The main attention is paid to the special case of the latter problem where all given strings are of length two. We show strong connections of this case to the feedback vertex set problem, the maximal network flow problem and the maximal multi-commodity network flow problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bafna, V., Lawler, E.L., Pevzner, P.A.: Approximation algorithms for multiple sequence alignment. Theoret. Comput. Sci. 182, 233–244 (1997)
Barone, P., Bonzzoni, P., Vedova, G.D., Mauri, G.: An approximation algorithm for the shortset common supersequence problem: an experimental analysis. In: Proc. of the 2001 ACM Symp. on Applied Comput., Las Vegas, March 11-14, pp. 56–60 (2001)
Cotta, C.: Memetic algorithms with partial lamarckism for the shortest common supersequence problem. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2005, vol. 3562, pp. 84–91. Springer, Heidelberg (2005)
Cotta, C.: A comparison of evolutionary approaches to the shortest common supersequence problem. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005, vol. 3512, pp. 50–58. Springer, Heidelberg (2005)
Ford Jr., L.R., Fulkerson, D.R.: Flows in networks, Princeton, N.Y (1962)
Fraser, C.B., Irving, R.W.: Approximation alrorithms for the shortest common supersequence. Nordic J. Comput. 2(3), 303–325 (1995)
Gusfield, D.: Efficient methods for multiple sequence alignment with guaranteed error bounds. Bull. Math. Biol. 55(1), 141–154 (1993)
Jiang, T., Li, M.: On the approximation of shortest common supersequences and longest common subsequences. SIAM J. on Discrete Math. (1992)
Maier, D.: The complexity of some problems on subsequences and supersequences. J. ACM 25, 322–336 (1978)
Middendorf, M.: The shortest common non-subsequence problem is NP-complete. Theoret. Comput. Sci. 108, 365–369 (1993)
Ning, K., Leong, H.W.: Towards a better solution to the schortest common supersequence problem: the decomposition and reduction algorithm. BMC Bioinformatics 7(suppl. 4), S12 (2006)
Pevzner, P.A.: Multiple alignment, communication costs, and graph matching. SIAM J. on Appl. Math. 52, 1763–1779 (1992)
Pietrzak, K.: On the parameterized complexity of the fixed alphabet shortest common supersequence and longest common subsequence problems. J. Comput. System Sci. 67, 757–771 (2007)
Raiha, K.-J., Ukkonen, E.: The shortest common supersequence problem over binary alphabet is NP-complete. Theoret. Comput. Sci. 16, 187–198 (1981)
Reingold, E.M., Nievergelt, J., Deo, N.: Combinatorial algorithms. Prentice-Hall, Inc., Englewood Cliffs (1977)
Rubinov, A.R., Timkovsky, V.G.: Nonsimilarity combinatorial problems. BioSystems 30, 81–92 (1993); Pevzner, P.A., Gelfand, M.S. (eds.): Computer Genetics, pp. 81–92. Elsevier (1993)
Rubinov, A.R., Timkovsky, V.G.: String noninclusion optimization problems. SIAM J. Discrete Math. 11, 456–467 (1998)
Sankoff, D.: Minimum mutation tree of sequences. SIAM J. Appl. Math. 28, 35–42 (1975)
Timkovsky, V.G.: Complexity of common subsequnce and supersequence problems and related problems. Kibernetika 5, 1–13 (1989); Cybernetics 25, 565–580 (1990) (English translation)
Waterman, M.S., Smith, T.F., Beyer, W.A.: Some biological sequence metrics. Adv. Math. 20, 367–387 (1976)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Timkovsky, V.G. (2008). Some Approximations for Shortest Common Nonsubsequences and Supersequences. In: Amir, A., Turpin, A., Moffat, A. (eds) String Processing and Information Retrieval. SPIRE 2008. Lecture Notes in Computer Science, vol 5280. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89097-3_25
Download citation
DOI: https://doi.org/10.1007/978-3-540-89097-3_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-89096-6
Online ISBN: 978-3-540-89097-3
eBook Packages: Computer ScienceComputer Science (R0)