Abstract
In this paper, the ωδ-convergence theory of nets and ideals in Lω-spaces is established. By means of the ωδ-convergence theory, some important characterizations with respective to the ωδ-closed sets and (ω 1, ω 2)δ-continuous mappings are obtained. Moreover, the mutual relationships between ωδ-convergence of molecular nets and ωδ-convergence of ideals are given.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chen, S.L.: Moore-Smith convergence theory on L-fuzzy order-preserving operator spaces. J. Jimei Univ. 7(3), 271–277 (2002)
Lai, Y.F., Chen, S.-L.: ωθ-Convergence theory of molecular nets and ideals in Lω-Spaces. Fuzzy Systems and Math. 23(ZJ) (2008)
Chen, S.L., Cheng, J.-S.: On Lω-spaces. In: Proc. Eleventh IFSA World Congress. vol. I, pp. 257–261. Tsinghua University Press (2005)
Chen, S.L., Dong, C.-Q.: L-order-preserving operator spaces. Fuzzy Systems and Math. 16(ZJ), 36–41 (2002)
Chen, S.L.: On L-fuzzy order-preserving operatorω-spaces. J. Fuzzy Math. 14(2), 481–498 (2006)
Chen, S.L.: \(\omega T_{1\frac{1}{2}}\)-separation in Lω-spaces. J. Jimei Univ. 12(2), 173–179 (2007)
Hutton, B.: Uniformities on fuzzy topological spaces. J. Math. Anal. Appl. 58, 559–571 (1977)
Wang, G.J.: A new fuzzy compactness defined by fuzzy nets. J. Math. Anal. Appl. 94, 1–23 (1983)
Wang, G.J.: Theory of topological molecular lattices. Fuzzy Sets and Systems 47, 351–376 (1992)
Yang, Z.Q.: Ideals in topological molecular lattices. Sinica Acta 2, 276–279 (1986)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chen, Sl., Wu, Yd., Cai, Gr. (2009). ωδ-Convergence Theory in Lω-Spaces. In: Cao, By., Zhang, Cy., Li, Tf. (eds) Fuzzy Information and Engineering. Advances in Soft Computing, vol 54. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88914-4_39
Download citation
DOI: https://doi.org/10.1007/978-3-540-88914-4_39
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-88913-7
Online ISBN: 978-3-540-88914-4
eBook Packages: EngineeringEngineering (R0)