Nothing Special   »   [go: up one dir, main page]

Skip to main content

Application of Data Mining to Network Intrusion Detection: Classifier Selection Model

  • Conference paper
Challenges for Next Generation Network Operations and Service Management (APNOMS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 5297))

Included in the following conference series:

  • 1333 Accesses

Abstract

As network attacks have increased in number and severity over the past few years, intrusion detection system (IDS) is increasingly becoming a critical component to secure the network. Due to large volumes of security audit data as well as complex and dynamic properties of intrusion behaviors, optimizing performance of IDS becomes an important open problem that is receiving more and more attention from the research community. The uncertainty to explore if certain algorithms perform better for certain attack classes constitutes the motivation for the reported herein. In this paper, we evaluate performance of a comprehensive set of classifier algorithms using KDD99 dataset. Based on evaluation results, best algorithms for each attack category is chosen and two classifier algorithm selection models are proposed. The simulation result comparison indicates that noticeable performance improvement and real-time intrusion detection can be achieved as we apply the proposed models to detect different kinds of network attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Weka – Data Mining Machine Learning Software, http://www.cs.waikato.ac.nz/ml/weka/

  2. KDD Cup 1999 Data, http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

  3. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

  4. Agarwal, R., Joshi, M.V.: PNrule: A New Framework for Learning Classifier Models in Data Mining. Tech. Report, Dept. of Computer Science, University of Minnesota (2000)

    Google Scholar 

  5. Yeung, D.Y., Chow, C.: Prazen-window Network Intrusion Detectors. In: 16th International Conference on Pattern Recognition, Quebec, Canada, pp. 11–15 (August 2002)

    Google Scholar 

  6. Xu, X.: Adaptive Intrusion Detection Based on Machine Learning: Feature Extraction, Classifier Construction and Sequential Pattern Prediction. International Journal of Web Services Practices 2(1-2), 49–58 (2006)

    Google Scholar 

  7. Li, Y., Guo, L.: An Active Learning Based TCM-KNN Algorithm for Supervised Network Intrusion Detection. In: 26th Computers & Security, pp. 459–467 (October 2007)

    Google Scholar 

  8. John, G.H., Langley, P.: Estimating Continuous Distributions in Bayesian Classifiers. In: Proc. of the 11th Conf. on Uncertainty in Artificial Intelligence (1995)

    Google Scholar 

  9. Quinlan, J.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo (1993)

    Google Scholar 

  10. Kohavi, R.: Scaling up the accuracy of naïve-bayes classifier: A decision-tree hybrid. In: Proc. of the 2nd International Conference on Knowledge Discovery and Data Mining, pp. 202–207. AAAI Press, Menlo Park (1996)

    Google Scholar 

  11. Werbos, P.: Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. PhD Thesis, Harvard University (1974)

    Google Scholar 

  12. Aksoy, S.: k-Nearest Neighbor Classifier and Distance Functions. Technical Report, Department of Computer Engineering, Bilkent University (February 2008)

    Google Scholar 

  13. Sabhnani, M., Serpen, G.: Why Machine Learning Algorithms Fail in Misuse Detection on KDD Intrusion Detection Dataset. In: Intelligent Data Analysis, vol. 6 (June 2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nguyen, H.A., Choi, D. (2008). Application of Data Mining to Network Intrusion Detection: Classifier Selection Model. In: Ma, Y., Choi, D., Ata, S. (eds) Challenges for Next Generation Network Operations and Service Management. APNOMS 2008. Lecture Notes in Computer Science, vol 5297. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88623-5_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88623-5_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88622-8

  • Online ISBN: 978-3-540-88623-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics