Nothing Special   »   [go: up one dir, main page]

Skip to main content

Ant Colony Optimization-Based Location-Aware Routing for Wireless Sensor Networks

  • Conference paper
Wireless Algorithms, Systems, and Applications (WASA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5258))

Abstract

The routing for Wireless Sensor Networks (WSNs) is a key and hard problem, and it is a research topic in the field of WSN applications. Based on Ant Colony Optimization (ACO), this paper proposes a novel adaptive intelligent routing scheme for WSNs. Following the proposed scheme, a high performance routing algorithm for WSNs is designed. The proposed routing scheme is very different from the existing ACO based routing schema for WSNs. On one hand, in the proposed scheme, the search range for an ant to select its next-hop node is limited to a subset of the set of the neighbors of the current node. On the other hand, by fusing the residual energy and the global and local location information of nodes, the new probability transition rules for an ant to select its next-hop node are defined. Compared with other ACO based routing algorithms for WSNs, the proposed routing algorithm has a better network performance on aspects of energy consumption, energy efficiency, and packet delivery latency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akyildiz, I.F., Su, W., Sankkarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a survey. Journal of Computer Networks 38(4), 393–424 (2002)

    Article  Google Scholar 

  2. Al-karaki, J.N., Kamal, A.E.: Routing techniques in wireless sensor networks: a survey. IEEE Wireless Communications 11(6), 6–28 (2004)

    Article  Google Scholar 

  3. Iyengar, S.S., Wu, H.-C., Balakrishnan, N., Changand, S.Y.: Biologically inspired cooperative routing for wireless mobile sensor networks. IEEE Systems Journal 1(1), 29–37 (2007)

    Article  Google Scholar 

  4. Aghaei, R.G., Rahman, M.A., Gueaieb, W., Saddik, A.E.: Ant colony-based reinforcement learning algorithm for routing in wireless sensor networks. In: 2007 IEEE Instrumentation and Measurement Technology, pp. 1–6. IEEE Press, New York (2007)

    Google Scholar 

  5. Dorigo, M., et al.: Ant system optimation: a colony of cooperating agents. IEEE Transactions on System, Man, Cybernetics Part B. 26(1), 29–41 (1996)

    Article  Google Scholar 

  6. Dorigo, M., Gambadella, L.M.: Ant colony system: a cooperative learning approach to the tranveling salesman problem. IEEE Transactions on Evolutionary Computation 1(1), 53–66 (1997)

    Article  Google Scholar 

  7. Zhang, Y., Kuhn, L.D., Fromherz, M.P.J.: Improvements on ant routing for sensor networks. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 154–165. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Shen, C., Jaikaeo, C.: Ad hoc multicast routing algorithm with swarm intelligence. Journal of Mobile Netwotks and Applications 10(1,2), 47–59 (2005)

    Article  Google Scholar 

  9. Akkaya, K., Younis, M.: A survey on routing protocols for wireless sensor networks. Journal of Ad Hoc Networks 3(3), 325–349 (2005)

    Article  Google Scholar 

  10. Caro, G.D., Dorigo, M.: AntNet: distributed stigmergetic control for communications networks. Journal of Artificial Intelligence Research 9, 317–365 (1998)

    MATH  Google Scholar 

  11. Dorigo, M., et al.: Special section on ant colony optimization. IEEE Transactions on Evolutionary Computation 6(4), 317–319 (2002)

    Article  Google Scholar 

  12. Chakrabarty, K., Iyengar, S.S.: Scalable infrastructure for distributed sensor networks. Springer, Heidelberg (2005)

    Google Scholar 

  13. Stuetzle, T., Dorigo, M.: A short convergence proof for a class of ACO algorithms. IEEE Transactions on Evolutionary Computation 6(4), 358–365 (2002)

    Article  Google Scholar 

  14. Schoonderwoerd, R., Holland, O., Bruten, J., Rothkrantz, L.: Ant-based load balancing in telecommunications networks. Adaptive Behavior 5(2), 169–207 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, X., Li, Q., Xiong, N., Pan, Y. (2008). Ant Colony Optimization-Based Location-Aware Routing for Wireless Sensor Networks. In: Li, Y., Huynh, D.T., Das, S.K., Du, DZ. (eds) Wireless Algorithms, Systems, and Applications. WASA 2008. Lecture Notes in Computer Science, vol 5258. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88582-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88582-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88581-8

  • Online ISBN: 978-3-540-88582-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics