Nothing Special   »   [go: up one dir, main page]

Skip to main content

Natural versus Granular Computing: Classifiers from Granular Structures

  • Conference paper
Rough Sets and Current Trends in Computing (RSCTC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5306))

Included in the following conference series:

Abstract

In data sets/decision systems, written down as pairs (U,A ∪ {d}) with objects U, attributes A, and a decision d, objects are described in terms of attribute–value formulas. This representation gives rise to a calculus in terms of descriptors which we call a natural computing. In some recent papers, the idea of L. Polkowski of computing with granules induced from similarity measures called rough inclusions have been tested. In this work, we pursue this topic and we study granular structures resulting from rough inclusions with classification problem in focus. Our results show that classifiers obtained from granular structures give better quality of classification than natural exhaustive classifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Artiemjew, P.: On classification of data by means of rough mereological granules of objects and rules. In: Wang, G., Li, T., Grzymała-Busse, J.W., Miao, D., Skowron, A., Yao, Y. (eds.) RSKT 2008. LNCS (LNAI), vol. 5009, pp. 221–228. Springer, Heidelberg (in print, 2008)

    Chapter  Google Scholar 

  2. Artiemjew, P.: Rough mereological classifiers obtained from weak variants of rough inclusions. In: Wang, G., Li, T., Grzymała-Busse, J.W., Miao, D., Skowron, A., Yao, Y. (eds.) RSKT 2008. LNCS (LNAI), vol. 5009, pp. 229–236. Springer, Heidelberg (in print, 2008)

    Chapter  Google Scholar 

  3. Bazan, J.G.: A comparison of dynamic and non–dynamic rough set methods for extracting laws from decision tables. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery, vol. 1, pp. 321–365. Physica Verlag, Heidelberg (1998)

    Google Scholar 

  4. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer, Dordrecht (1991)

    Book  MATH  Google Scholar 

  5. Polkowski, L.: On the idea of using granular rough mereological structures in classification of data. In: Wang, G., Li, T., Grzymała-Busse, J.W., Miao, D., Skowron, A., Yao, Y. (eds.) RSKT 2008. LNCS (LNAI), vol. 5009, pp. 213–220. Springer, Heidelberg (in print, 2008)

    Chapter  Google Scholar 

  6. Polkowski, L.: The paradigm of granular rough computing. In: Zhang, D., Wang, Y., Kinsner, W. (eds.) ICCI 2007, pp. 145–163. IEEE Computer Society, Los Alamitos (2007)

    Google Scholar 

  7. Polkowski, L.: Formal granular calculi based on rough inclusions (a feature talk). In: Zhang, Y.-Q., Lin, T.Y. (eds.) IEEE GrC 2006, pp. 9–18. IEEE Press, Piscataway (2006)

    Google Scholar 

  8. Polkowski, L.: Formal granular calculi based on rough inclusions (a feature talk). In: Hu, X., Liu, Q., Skowron, A., Lin, T.Y., Yager, R.R., Zhang, B. (eds.) IEEE GrC 2005, pp. 57–62. IEEE Press, Piscataway (2005)

    Google Scholar 

  9. Polkowski, L.: Toward rough set foundations. Mereological approach (a plenary lecture). In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 8–25. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Polkowski, L., Skowron, A.: Rough mereology: a new paradigm for approximate reasoning. International Journal of Approximate Reasoning 15(4), 333–365 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. RSES, http://logic.mimuw.edu.pl/rses

  12. UCI Repository, http://www.ics.uci.edu/~mlearn/databases/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Artiemjew, P. (2008). Natural versus Granular Computing: Classifiers from Granular Structures. In: Chan, CC., Grzymala-Busse, J.W., Ziarko, W.P. (eds) Rough Sets and Current Trends in Computing. RSCTC 2008. Lecture Notes in Computer Science(), vol 5306. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88425-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88425-5_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88423-1

  • Online ISBN: 978-3-540-88425-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics