Abstract
In data sets/decision systems, written down as pairs (U,A ∪ {d}) with objects U, attributes A, and a decision d, objects are described in terms of attribute–value formulas. This representation gives rise to a calculus in terms of descriptors which we call a natural computing. In some recent papers, the idea of L. Polkowski of computing with granules induced from similarity measures called rough inclusions have been tested. In this work, we pursue this topic and we study granular structures resulting from rough inclusions with classification problem in focus. Our results show that classifiers obtained from granular structures give better quality of classification than natural exhaustive classifiers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Artiemjew, P.: On classification of data by means of rough mereological granules of objects and rules. In: Wang, G., Li, T., Grzymała-Busse, J.W., Miao, D., Skowron, A., Yao, Y. (eds.) RSKT 2008. LNCS (LNAI), vol. 5009, pp. 221–228. Springer, Heidelberg (in print, 2008)
Artiemjew, P.: Rough mereological classifiers obtained from weak variants of rough inclusions. In: Wang, G., Li, T., Grzymała-Busse, J.W., Miao, D., Skowron, A., Yao, Y. (eds.) RSKT 2008. LNCS (LNAI), vol. 5009, pp. 229–236. Springer, Heidelberg (in print, 2008)
Bazan, J.G.: A comparison of dynamic and non–dynamic rough set methods for extracting laws from decision tables. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery, vol. 1, pp. 321–365. Physica Verlag, Heidelberg (1998)
Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer, Dordrecht (1991)
Polkowski, L.: On the idea of using granular rough mereological structures in classification of data. In: Wang, G., Li, T., Grzymała-Busse, J.W., Miao, D., Skowron, A., Yao, Y. (eds.) RSKT 2008. LNCS (LNAI), vol. 5009, pp. 213–220. Springer, Heidelberg (in print, 2008)
Polkowski, L.: The paradigm of granular rough computing. In: Zhang, D., Wang, Y., Kinsner, W. (eds.) ICCI 2007, pp. 145–163. IEEE Computer Society, Los Alamitos (2007)
Polkowski, L.: Formal granular calculi based on rough inclusions (a feature talk). In: Zhang, Y.-Q., Lin, T.Y. (eds.) IEEE GrC 2006, pp. 9–18. IEEE Press, Piscataway (2006)
Polkowski, L.: Formal granular calculi based on rough inclusions (a feature talk). In: Hu, X., Liu, Q., Skowron, A., Lin, T.Y., Yager, R.R., Zhang, B. (eds.) IEEE GrC 2005, pp. 57–62. IEEE Press, Piscataway (2005)
Polkowski, L.: Toward rough set foundations. Mereological approach (a plenary lecture). In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 8–25. Springer, Heidelberg (2004)
Polkowski, L., Skowron, A.: Rough mereology: a new paradigm for approximate reasoning. International Journal of Approximate Reasoning 15(4), 333–365 (1997)
UCI Repository, http://www.ics.uci.edu/~mlearn/databases/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Artiemjew, P. (2008). Natural versus Granular Computing: Classifiers from Granular Structures. In: Chan, CC., Grzymala-Busse, J.W., Ziarko, W.P. (eds) Rough Sets and Current Trends in Computing. RSCTC 2008. Lecture Notes in Computer Science(), vol 5306. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88425-5_16
Download citation
DOI: https://doi.org/10.1007/978-3-540-88425-5_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-88423-1
Online ISBN: 978-3-540-88425-5
eBook Packages: Computer ScienceComputer Science (R0)