Nothing Special   »   [go: up one dir, main page]

Skip to main content

T-rotation: Multiple Publications of Privacy Preserving Data Sequence

  • Conference paper
Advanced Data Mining and Applications (ADMA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5139))

Included in the following conference series:

Abstract

In privacy preserving data publishing, most current methods are limited only to the static data which are released once and fixed. However, in real dynamic environments, the current methods may become vulnerable to inference. In this paper, we propose the t-rotation method to process this continuously growing dataset in an effective manner. T-rotation mixes t continuous periods to form the dataset and then anonymizes. It avoids the inference by the temporal background knowledge and considerably improves the anonymity quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aggarwal, G., Feder, T., Kenthapadi, K., Motwani, R., Panigrahy, R., Thomas, D., Zhu, A.: Anonymizing Tables. In: The 10th International Conference on Database Theory, pp. 246–258 (2005)

    Google Scholar 

  2. Byun, J.W., Sohn, Y., Bertino, E., Li, N.: Secure Anonymization for Incremental Datasets. In: Secure Data Management, 3rd VLDB Workshop, pp. 48–63 (2006)

    Google Scholar 

  3. LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Incognito: Efficient Full-domain K-anonymity. In: ACM International Conference on Management of Data, pp. 49–60 (2005)

    Google Scholar 

  4. Machanavajjhala, A., Gehrke, J., Kifer, D.: l-diversity: Privacy beyond K-anonymity. In: The 22nd International Conference on Data Engineering, pp. 24–35 (2006)

    Google Scholar 

  5. Pei, J., Xu, J., Wang, Z., Wang, W., Wang, K.: Maintaining K-anonymity against Incremental Updates. In: 19th International Conference on Scientific and Statistical Database Management, pp. 5–14 (2007)

    Google Scholar 

  6. Samarati, P.: Protecting Respondents’ Identities in Microdata Release. IEEE Transactions on Knowledge and Data Engineering 13, 1010–1027 (2001)

    Article  Google Scholar 

  7. Sweeney, L.: Achieving K-anonymity Privacy Protection Using Generalization and Suppression. International Journal on Uncertainty, Fuzziness and Knowledge Based Systems 10, 571–588 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. UCI Machine Learning Repository, http://www.ics.uci.edu/~mlearn/MLRepository.html

  9. Wang, K., Fung, B.C.M.: Anonymizing Sequential Releases. In: 12th ACM SIGKDD, pp. 414–423 (2006)

    Google Scholar 

  10. Wong, R.C., Li, J., Fu, A.W., Wang, K. (α, k)-anonymity: an Enhanced K-anonymity Model for Privacy-preserving Data Publishing. In: 12th ACM SIGKDD, pp. 754–759 (2006)

    Google Scholar 

  11. Xiao, X., Tao, Y.: Anatomy: Simple and Effective Privacy Preservation. In: The 32nd international conference on Very large data bases, pp. 139–150 (2006)

    Google Scholar 

  12. Xiao, X., Tao, Y.: M-Invariance: Towards Privacy Preserving Re-publication of Dynamic Datasets. In: ACM International Conference on Management of Data, pp. 689–700 (2007)

    Google Scholar 

  13. Xu, J., Wang, W., Pei, J., Wang, X., Shi, B., Fu, A.W.: Utility-based Anonymization Using Local Recoding. In: 12th ACM SIGKDD, pp. 785–790 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tao, Y., Tong, Y., Tan, S., Tang, S., Yang, D. (2008). T-rotation: Multiple Publications of Privacy Preserving Data Sequence. In: Tang, C., Ling, C.X., Zhou, X., Cercone, N.J., Li, X. (eds) Advanced Data Mining and Applications. ADMA 2008. Lecture Notes in Computer Science(), vol 5139. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88192-6_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88192-6_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88191-9

  • Online ISBN: 978-3-540-88192-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics