Nothing Special   »   [go: up one dir, main page]

Skip to main content

Mining Statistical Association Rules to Select the Most Relevant Medical Image Features

  • Chapter
Mining Complex Data

Abstract

In this chapter we discuss how to take advantage of association rule mining to promote feature selection from low-level image features. Feature selection can significantly improve the precision of content-based queries in image databases by removing noisy and redundant features. A new algorithm named StARMiner is presented. StARMiner aims at finding association rules relating low-level image features to high-level knowledge about the images. Such rules are employed to select the most relevant features. We present a case study in order to highlight how the proposed algorithm performs in different situations, regarding its ability to select the most relevant features that properly distinguish the images. We compare the StARMiner algorithm with other well-known feature selection algorithms, showing that StARMiner reaches higher precision rates. The results obtained corroborate the assumption that association rule mining can effectively support dimensionality reduction in image databases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of items in large databases. In: ACM SIGMOD Intl. Conf. on Management of Data, Washington, D.C, pp. 207–216 (1993)

    Google Scholar 

  2. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Intl. Conf. on Very Large Databases (VLDB), Santiago, Chile, pp. 487–499 (1994)

    Google Scholar 

  3. Apte, C., Liu, B., Pednault, E.P.D., Smyth, P.: Business applications of data mining. Communications of the ACM (CACM) 45(8), 49–53 (2002)

    Article  Google Scholar 

  4. Aumann, Y., Lindell, Y.: A statistical theory for quantitative association rules. In: The fifth ACM SIGKDD Intl. Conf. on Knowledge discovery and data mining, San Diego, California, United States, pp. 261–270 (1999)

    Google Scholar 

  5. Baeza-Yates, R.A., Ribeiro-Neto, B.A.: Modern Information Retrieval. Addison-Wesley, Wokingham

    Google Scholar 

  6. Balan, A.G.R., Traina, A.J.M., Traina Jr., C.,, P.M.: d. A. Marques. Fractal analysis of image textures for indexing and retrieval by content. In: 18th IEEE Intl. Symposium on Computer-Based Medical Systems - CBMS, Dublin, Ireland, pp. 581–586 (2005)

    Google Scholar 

  7. Beyer, K., Godstein, J., Ramakrishnan, R., Shaft, U.: When is ”nearest neighbor” meaningful? In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 217–235. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  8. Cardie, C.: Using decision trees to improve case-based learning. In: 10th Intl. Conf. on Machine Learning, pp. 25–32 (1993)

    Google Scholar 

  9. Comer, M.L., Delp, E.J.: The em/mpm algorithm for segmentation of textured images: Analysis and further experimental results. IEEE Trans. on Image Processing 9(10), 1731–1744 (2000)

    Article  MATH  Google Scholar 

  10. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: Int’l Conf. on Management of Data, Dallas, Texas, USA (2000)

    Google Scholar 

  11. Hsu, W., Lee, M.L., Zhang, J.: Image mining: Trends and developments. Journal of Intelligent Information Systems 19(1), 7–23 (2002)

    Article  Google Scholar 

  12. Huang, S.H.: Dimensionality reduction in automatic knowledge acquisition: A simple greedy search approach. IEEE Trans. on Knowledge and Data Engineering (TKDE) 15(6), 1364–1373 (2003)

    Article  Google Scholar 

  13. Kinoshita, S.K., de Azevedo-Marques, P.M., Pereira Jr., R.R., Heisinger Rodrigues, J.A.: Content-based retrieval of mammograms using visual features related to breast density patterns. Journal of Digital Imaging 20(2), 172–190 (2007)

    Article  Google Scholar 

  14. Kira, K., Rendell, L.A.: A practical approach for feature selection. In: 9th Intl. Conf. on Machine Learning, Aberdeen, Scotland, pp. 249–256 (1992)

    Google Scholar 

  15. Kononenko, I.: Estimating attributes: Analysis and extension of relief. In: European Conf. on Machine Learning, Catania, Italy, pp. 171–182 (1994)

    Google Scholar 

  16. Liu, Y., Zhang, D., Lu, G., Ma, W.-Y.: A survey of content-based image retrieval with high-level semantics. Pattern Recognition Letters 40, 262–282 (2007)

    MATH  Google Scholar 

  17. Malcok, M., Aslandogan, Y., Yesildirek, A.: Fractal dimension and similarity search in high-dimensional spatial databases. In: IEEE Intl. Conf. on Information Reuse and Integration, Waikoloa, Hawaii, USA. pp. 380–384 (2006)

    Google Scholar 

  18. Molina, L.C., Belanche, L., Nebot, A.: Feature selection algorithms: A survey and experimental evaluation. In: IEEE Intl. Conf. on Data Mining 2002 (ICDM 2002), Washington, DC, USA, pp. 306–404 (2002)

    Google Scholar 

  19. Narendra, P.M., Fukunaga, K.: A branch and bound algorithm for feature subset selection. IEEE Trans. On Computer 26(9), 917–922 (1977)

    Article  MATH  Google Scholar 

  20. Ordonez, C., Ezquerra, N., Santana, C.A.: Constraining and summarizing association rules in medical data. Knowledge and Information Systems 9(3), 259–283 (2006)

    Article  Google Scholar 

  21. Quinlan, R.: C4.5: Programs for Machine Learning, San Mateo, CA (1993)

    Google Scholar 

  22. Refaeilzadeh, P., Tang, L., Liu, H.: On comparison of feature selection algorithms. In: AAAI 2007 Workshop on Evaluation Methods for Machine Learning II, Vancouver, Canada, pp. 1–6 (2007)

    Google Scholar 

  23. Ribeiro, M.X., Balan, A.G.R., Felipe, J.C., Traina, A.J.M., Traina Jr., C.: Mining statistical association rules to select the most relevant medical image features. In: 1st Intl. Workshop on Mining Complex Data (IEEE MCD 2005), Houston, USA, pp. 91–98 (2005)

    Google Scholar 

  24. Ribeiro, M.X., Marques, J., Traina, A.J.M., Traina-Jr, C.: Statistical association rules and relevance feedback: Powerful allies to improve the retrieval of medical images. In: 19th IEEE Intl. Symposium on Computer-Based Medical Systems, Salt Lake City, USA, pp. 887–892 (2006)

    Google Scholar 

  25. Ribeiro, M.X., Vieira, M.T.P.: A new approach for mining association rules in data warehouses. In: Christiansen, H., Hacid, M.-S., Andreasen, T., Larsen, H.L. (eds.) FQAS 2004. LNCS (LNAI), vol. 3055, pp. 28–110. Springer, Heidelberg (2004)

    Google Scholar 

  26. Savarese, A., Omiecinski, E., Navathe, S.: An efficient algorithm for mining association rules in large databases. In: 21st Conf. on Very Large Databases (VLDB 1995) (1995)

    Google Scholar 

  27. Srikant, R., Agrawal, R.: Mining quantitative association rules in large relational tables. In: ACM SIGMOD Intl. Conf. on Management of Data, Montreal, Canada, pp. 1–12 (1996)

    Google Scholar 

  28. Zaki, M.J., Parthasarathy, S., Ogihara, M., Li, W.: New algorithms for fast discovery of association rules. In: ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining, Newport Beach, USA (1997)

    Google Scholar 

  29. Zhang, S., Wu, X., Zhang, C.: Multi-database mining. IEEE Computational Intelligence Bulletin 2(1), 5–13 (2003)

    Google Scholar 

  30. Zhong, N., Ohshima, M., Yao, Y.Y., Ohsuga, S.: Interestingness, peculiarity, and multi-database mining. In: IEEE Intl. Conf. on Data Mining, pp. 566–573 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ribeiro, M.X., Balan, A.G.R., Felipe, J.C., Traina, A.J.M., Traina, C. (2009). Mining Statistical Association Rules to Select the Most Relevant Medical Image Features. In: Zighed, D.A., Tsumoto, S., Ras, Z.W., Hacid, H. (eds) Mining Complex Data. Studies in Computational Intelligence, vol 165. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88067-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88067-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88066-0

  • Online ISBN: 978-3-540-88067-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics