Nothing Special   »   [go: up one dir, main page]

Skip to main content

State-Merging DFA Induction Algorithms with Mandatory Merge Constraints

  • Conference paper
Grammatical Inference: Algorithms and Applications (ICGI 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5278))

Included in the following conference series:

Abstract

Standard state-merging DFA induction algorithms, such as RPNI or Blue-Fringe, aim at inferring a regular language from positive and negative strings. In particular, the negative information prevents merging incompatible states: merging those states would lead to produce an inconsistent DFA. Whenever available, domain knowledge can also be used to extend the set of incompatible states. We introduce here mandatory merge constraints, which form the logical counterpart to the usual incompatibility constraints. We show how state-merging algorithms can benefit from these new constraints. Experiments following the Abbadingo contest protocol illustrate the interest of using mandatory merge constraints. As a side effect, this paper also points out an interesting property of state-merging techniques: they can be extended to take any pair of DFAs as inputs rather than simple strings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Oncina, J., García, P.: Identifying regular languages in polynomial time. In: Bunke, H. (ed.) Advances in Structural and Syntactic Pattern Recognition. Series in Machine Perception and Artificial Intelligence, vol. 5, pp. 99–108. World Scientific, Singapore (1992)

    Google Scholar 

  2. Lang, K., Pearlmutter, B., Price, R.: Results of the abbadingo one DFA learning competition and a new evidence-driven state merging algorithm. In: Honavar, V.G., Slutzki, G. (eds.) ICGI 1998. LNCS (LNAI), vol. 1433, pp. 1–12. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  3. Gold, E.: Language identification in the limit. Information and Control 10(5), 447–474 (1967)

    Article  MATH  Google Scholar 

  4. Coste, F., Nicolas, J.: How considering incompatible state mergings may reduce the DFA induction search tree. In: Honavar, V.G., Slutzki, G. (eds.) ICGI 1998. LNCS (LNAI), vol. 1433, pp. 199–210. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  5. Coste, F., Fredouille, D., Kermorvant, C., de la Higuera, C.: Introducing domain and typing bias in automata inference. In: Paliouras, G., Sakakibara, Y. (eds.) ICGI 2004. LNCS (LNAI), vol. 3264, pp. 115–126. Springer, Heidelberg (2004)

    Google Scholar 

  6. Damas, C., Lambeau, B., Dupont, P., van Lamsweerde, A.: Generating annotated behavior models from end-user scenarios. IEEE Transactions on Software Engineering 31(12), 1056–1073 (2005)

    Article  Google Scholar 

  7. Dupont, P., Lambeau, B., Damas, C., van Lamsweerde, A.: The QSM algorithm and its application to software behavior model induction. Applied Artificial Intelligence 22, 77–115 (2008)

    Article  Google Scholar 

  8. Dupont, P., Miclet, L., Vidal, E.: What is the search space of the regular inference? In: Carrasco, R.C., Oncina, J. (eds.) ICGI 1994. LNCS, vol. 862, pp. 25–37. Springer, Heidelberg (1994)

    Google Scholar 

  9. Oncina, J., Varó, M.A.: Using domain information during the learning of a subsequential transducer. In: Miclet, L., de la Higuera, C. (eds.) ICGI 1996. LNCS, vol. 1147, pp. 301–312. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  10. Uchitel, S., Kramer, J., Magee, J.: Synthesis of behavorial models from scenarios. IEEE Transactions on Software Engineering 29(2), 99–115 (2003)

    Article  Google Scholar 

  11. Dupont, P.: Incremental regular inference. In: Miclet, L., de la Higuera, C. (eds.) ICGI 1996. LNCS, vol. 1147, pp. 222–237. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alexander Clark François Coste Laurent Miclet

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lambeau, B., Damas, C., Dupont, P. (2008). State-Merging DFA Induction Algorithms with Mandatory Merge Constraints. In: Clark, A., Coste, F., Miclet, L. (eds) Grammatical Inference: Algorithms and Applications. ICGI 2008. Lecture Notes in Computer Science(), vol 5278. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88009-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88009-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88008-0

  • Online ISBN: 978-3-540-88009-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics