Abstract
Standard state-merging DFA induction algorithms, such as RPNI or Blue-Fringe, aim at inferring a regular language from positive and negative strings. In particular, the negative information prevents merging incompatible states: merging those states would lead to produce an inconsistent DFA. Whenever available, domain knowledge can also be used to extend the set of incompatible states. We introduce here mandatory merge constraints, which form the logical counterpart to the usual incompatibility constraints. We show how state-merging algorithms can benefit from these new constraints. Experiments following the Abbadingo contest protocol illustrate the interest of using mandatory merge constraints. As a side effect, this paper also points out an interesting property of state-merging techniques: they can be extended to take any pair of DFAs as inputs rather than simple strings.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Oncina, J., García, P.: Identifying regular languages in polynomial time. In: Bunke, H. (ed.) Advances in Structural and Syntactic Pattern Recognition. Series in Machine Perception and Artificial Intelligence, vol. 5, pp. 99–108. World Scientific, Singapore (1992)
Lang, K., Pearlmutter, B., Price, R.: Results of the abbadingo one DFA learning competition and a new evidence-driven state merging algorithm. In: Honavar, V.G., Slutzki, G. (eds.) ICGI 1998. LNCS (LNAI), vol. 1433, pp. 1–12. Springer, Heidelberg (1998)
Gold, E.: Language identification in the limit. Information and Control 10(5), 447–474 (1967)
Coste, F., Nicolas, J.: How considering incompatible state mergings may reduce the DFA induction search tree. In: Honavar, V.G., Slutzki, G. (eds.) ICGI 1998. LNCS (LNAI), vol. 1433, pp. 199–210. Springer, Heidelberg (1998)
Coste, F., Fredouille, D., Kermorvant, C., de la Higuera, C.: Introducing domain and typing bias in automata inference. In: Paliouras, G., Sakakibara, Y. (eds.) ICGI 2004. LNCS (LNAI), vol. 3264, pp. 115–126. Springer, Heidelberg (2004)
Damas, C., Lambeau, B., Dupont, P., van Lamsweerde, A.: Generating annotated behavior models from end-user scenarios. IEEE Transactions on Software Engineering 31(12), 1056–1073 (2005)
Dupont, P., Lambeau, B., Damas, C., van Lamsweerde, A.: The QSM algorithm and its application to software behavior model induction. Applied Artificial Intelligence 22, 77–115 (2008)
Dupont, P., Miclet, L., Vidal, E.: What is the search space of the regular inference? In: Carrasco, R.C., Oncina, J. (eds.) ICGI 1994. LNCS, vol. 862, pp. 25–37. Springer, Heidelberg (1994)
Oncina, J., Varó, M.A.: Using domain information during the learning of a subsequential transducer. In: Miclet, L., de la Higuera, C. (eds.) ICGI 1996. LNCS, vol. 1147, pp. 301–312. Springer, Heidelberg (1996)
Uchitel, S., Kramer, J., Magee, J.: Synthesis of behavorial models from scenarios. IEEE Transactions on Software Engineering 29(2), 99–115 (2003)
Dupont, P.: Incremental regular inference. In: Miclet, L., de la Higuera, C. (eds.) ICGI 1996. LNCS, vol. 1147, pp. 222–237. Springer, Heidelberg (1996)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lambeau, B., Damas, C., Dupont, P. (2008). State-Merging DFA Induction Algorithms with Mandatory Merge Constraints. In: Clark, A., Coste, F., Miclet, L. (eds) Grammatical Inference: Algorithms and Applications. ICGI 2008. Lecture Notes in Computer Science(), vol 5278. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88009-7_11
Download citation
DOI: https://doi.org/10.1007/978-3-540-88009-7_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-88008-0
Online ISBN: 978-3-540-88009-7
eBook Packages: Computer ScienceComputer Science (R0)