Summary
A completely well-centered tetrahedral mesh is a triangulation of a three dimensional domain in which every tetrahedron and every triangle contains its circumcenter in its interior. Such meshes have applications in scientific computing and other fields. We show how to triangulate simple domains using completely well-centered tetrahedra. The domains we consider here are space, infinite slab, infinite rectangular prism, cube, and regular tetrahedron. We also demonstrate single tetrahedra with various combinations of the properties of dihedral acuteness, 2-well-centeredness, and 3-well-centeredness.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alliez, P., Cohen-Steiner, D., Yvinec, M., Desbrun, M.: Variational tetrahedral meshing. ACM Transactions on Graphics 24(3), 617–625 (2005), doi:10.1145/1073204.1073238
Barnes, E.S., Sloane, N.J.A.: The optimal lattice quantizer in three dimensions. SIAM Journal on Algebraic and Discrete Methods 4(1), 30–41 (1983), doi:10.1137/0604005
Cassidy, C., Lord, G.: A square acutely triangulated. J. Recreational Math. 13, 263–268 (1980)
Desbrun, M., Hirani, A.N., Leok, M., Marsden, J.E.: Discrete exterior calculus. arXiv:math.DG/0508341 (2005), http://arxiv.org/abs/math.DG/0508341
Du, Q., Faber, V., Gunzburger, M.: Centroidal Voronoi tessellations: applications and algorithms. SIAM Review 41(4), 637–676 (1999), doi:10.1137/S0036144599352836
Eppstein, D., Sullivan, J.M., Üngör, A.: Tiling space and slabs with acute tetrahedra. Computational Geometry: Theory and Applications 27(3), 237–255 (2004), doi:10.1016/j.comgeo.2003.11.003
Fuchs, A.: Automatic grid generation with almost regular Delaunay tetrahedra. In: Proceedings of the 7th International Meshing Roundtable, Dearborn, Michigan, October 26–28, 1998, pp. 133–147. Sandia National Laboratories (1998)
Hirani, A.N.: Discrete Exterior Calculus. PhD thesis, California Institute of Technology (May 2003), http://resolver.caltech.edu/CaltechETD:etd-05202003-095403
Kimmel, R., Sethian, J.: Computing geodesic paths on manifolds. Proc. Nat. Acad. Sci. 95, 8341–8435 (1998), doi:10.1073/pnas.95.15.8431
Nicolaides, R.A.: Direct discretization of planar div-curl problems. SIAM Journal on Numerical Analysis 29(1), 32–56 (1992), doi:10.1137/0729003
Sazonov, I., Hassan, O., Morgan, K., Weatherill, N.P.: Smooth Delaunay – Voronoi dual meshes for co-volume integration schemes. In: Proceedings of the 15th International Meshing Roundtable, Birmingham, Alabama, September 17–20, 2006, Sandia National Laboratories (2006), doi:10.1007/978-3-540-34958-7_30
Sommerville, D.M.Y.: Space-filling tetrahedra in euclidean space. Proceedings of the Edinburgh Mathematical Society 41, 49–57 (1923)
Üngör, A., Sheffer, A.: Pitching tents in space-time: Mesh generation for discontinuous Galerkin method. International Journal of Foundations of Computer Science 13(2), 201–221 (2002), doi:10.1142/S0129054102001059
VanderZee, E., Hirani, A.N., Guoy, D., Ramos, E.: Well-centered planar triangulation – an iterative approach. In: Brewer, M.L., Marcum, D. (eds.) Proceedings of the 16th International Meshing Roundtable, Seattle, Washington, October 14–17, 2007, pp. 121–138. Springer, Heidelberg (2007), http://www.cs.uiuc.edu/hirani/papers/VaHiGuRa2007_IMR.pdf , doi:10.1007/978-3-540-75103-8_7
VanderZee, E., Hirani, A. N., Guoy, D., Ramos, E.: Well-centered triangulation. Tech. Rep. UIUCDCS-R-2008-2936, Department of Computer Science, University of Illinois at Urbana-Champaign, Also available as a preprint at arXiv as arXiv:0802.2108v1 [cs.CG] (February 2008), http://arxiv.org/abs/0802.2108
Vander Zee, E., Hirani, A.N., Guoy, D., Zharnitsky, V.: Conditions for well-centeredness. Tech. Rep. UIUCDCS-R-2008-2971, Department of Computer Science, University of Illinois at Urbana-Champaign (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
VanderZee, E., Hirani, A.N., Guoy, D. (2008). Triangulation of Simple 3D Shapes with Well-Centered Tetrahedra. In: Garimella, R.V. (eds) Proceedings of the 17th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87921-3_2
Download citation
DOI: https://doi.org/10.1007/978-3-540-87921-3_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-87920-6
Online ISBN: 978-3-540-87921-3
eBook Packages: EngineeringEngineering (R0)