Nothing Special   »   [go: up one dir, main page]

Skip to main content

Triangulation of Simple 3D Shapes with Well-Centered Tetrahedra

  • Conference paper
Proceedings of the 17th International Meshing Roundtable

Summary

A completely well-centered tetrahedral mesh is a triangulation of a three dimensional domain in which every tetrahedron and every triangle contains its circumcenter in its interior. Such meshes have applications in scientific computing and other fields. We show how to triangulate simple domains using completely well-centered tetrahedra. The domains we consider here are space, infinite slab, infinite rectangular prism, cube, and regular tetrahedron. We also demonstrate single tetrahedra with various combinations of the properties of dihedral acuteness, 2-well-centeredness, and 3-well-centeredness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alliez, P., Cohen-Steiner, D., Yvinec, M., Desbrun, M.: Variational tetrahedral meshing. ACM Transactions on Graphics 24(3), 617–625 (2005), doi:10.1145/1073204.1073238

    Article  Google Scholar 

  2. Barnes, E.S., Sloane, N.J.A.: The optimal lattice quantizer in three dimensions. SIAM Journal on Algebraic and Discrete Methods 4(1), 30–41 (1983), doi:10.1137/0604005

    Article  MATH  MathSciNet  Google Scholar 

  3. Cassidy, C., Lord, G.: A square acutely triangulated. J. Recreational Math. 13, 263–268 (1980)

    MathSciNet  Google Scholar 

  4. Desbrun, M., Hirani, A.N., Leok, M., Marsden, J.E.: Discrete exterior calculus. arXiv:math.DG/0508341 (2005), http://arxiv.org/abs/math.DG/0508341

  5. Du, Q., Faber, V., Gunzburger, M.: Centroidal Voronoi tessellations: applications and algorithms. SIAM Review 41(4), 637–676 (1999), doi:10.1137/S0036144599352836

    Google Scholar 

  6. Eppstein, D., Sullivan, J.M., Üngör, A.: Tiling space and slabs with acute tetrahedra. Computational Geometry: Theory and Applications 27(3), 237–255 (2004), doi:10.1016/j.comgeo.2003.11.003

    MATH  MathSciNet  Google Scholar 

  7. Fuchs, A.: Automatic grid generation with almost regular Delaunay tetrahedra. In: Proceedings of the 7th International Meshing Roundtable, Dearborn, Michigan, October 26–28, 1998, pp. 133–147. Sandia National Laboratories (1998)

    Google Scholar 

  8. Hirani, A.N.: Discrete Exterior Calculus. PhD thesis, California Institute of Technology (May 2003), http://resolver.caltech.edu/CaltechETD:etd-05202003-095403

  9. Kimmel, R., Sethian, J.: Computing geodesic paths on manifolds. Proc. Nat. Acad. Sci. 95, 8341–8435 (1998), doi:10.1073/pnas.95.15.8431

    Article  MathSciNet  Google Scholar 

  10. Nicolaides, R.A.: Direct discretization of planar div-curl problems. SIAM Journal on Numerical Analysis 29(1), 32–56 (1992), doi:10.1137/0729003

    Article  MATH  MathSciNet  Google Scholar 

  11. Sazonov, I., Hassan, O., Morgan, K., Weatherill, N.P.: Smooth Delaunay – Voronoi dual meshes for co-volume integration schemes. In: Proceedings of the 15th International Meshing Roundtable, Birmingham, Alabama, September 17–20, 2006, Sandia National Laboratories (2006), doi:10.1007/978-3-540-34958-7_30

    Google Scholar 

  12. Sommerville, D.M.Y.: Space-filling tetrahedra in euclidean space. Proceedings of the Edinburgh Mathematical Society 41, 49–57 (1923)

    Google Scholar 

  13. Üngör, A., Sheffer, A.: Pitching tents in space-time: Mesh generation for discontinuous Galerkin method. International Journal of Foundations of Computer Science 13(2), 201–221 (2002), doi:10.1142/S0129054102001059

    Google Scholar 

  14. VanderZee, E., Hirani, A.N., Guoy, D., Ramos, E.: Well-centered planar triangulation – an iterative approach. In: Brewer, M.L., Marcum, D. (eds.) Proceedings of the 16th International Meshing Roundtable, Seattle, Washington, October 14–17, 2007, pp. 121–138. Springer, Heidelberg (2007), http://www.cs.uiuc.edu/hirani/papers/VaHiGuRa2007_IMR.pdf , doi:10.1007/978-3-540-75103-8_7

    Google Scholar 

  15. VanderZee, E., Hirani, A. N., Guoy, D., Ramos, E.: Well-centered triangulation. Tech. Rep. UIUCDCS-R-2008-2936, Department of Computer Science, University of Illinois at Urbana-Champaign, Also available as a preprint at arXiv as arXiv:0802.2108v1 [cs.CG] (February 2008), http://arxiv.org/abs/0802.2108

  16. Vander Zee, E., Hirani, A.N., Guoy, D., Zharnitsky, V.: Conditions for well-centeredness. Tech. Rep. UIUCDCS-R-2008-2971, Department of Computer Science, University of Illinois at Urbana-Champaign (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

VanderZee, E., Hirani, A.N., Guoy, D. (2008). Triangulation of Simple 3D Shapes with Well-Centered Tetrahedra. In: Garimella, R.V. (eds) Proceedings of the 17th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87921-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87921-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87920-6

  • Online ISBN: 978-3-540-87921-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics