Nothing Special   »   [go: up one dir, main page]

Skip to main content

Practical and Theoretical Issues for the Computation of Generalized Critical Values of a Polynomial Mapping

  • Conference paper
Computer Mathematics (ASCM 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5081))

Included in the following conference series:

  • 1390 Accesses

Abstract

Let be a polynomial of degree D. Computing the set of generalized critical values of the mapping (i.e. ) is an important step in algorithms computing sampling points in semi-algebraic sets defined by a single inequality.

A previous algorithm allows us to compute the set of generalized critical values of \(\widetilde{f}\). This one is based on the computation of the critical locus of a projection on a plane P. This plane P must be chosen such that some global properness properties of some projections are satisfied. These properties, which are generically satisfied, are difficult to check in practice. Moreover, choosing randomly the plane P induces a growth of the coefficients appearing in the computations.

We provide here a new certified algorithm computing the set of generalized critical values of \(\widetilde{f}\). This one is still based on the computation of the critical locus on a plane P. The certification process consists here in checking that this critical locus has dimension 1 (which is easy to check in practice), without any assumption of global properness. Moreover, this allows us to limit the growth of coefficients appearing in the computations by choosing a plane P defined by sparse equations. Additionally, we prove that the degree of this critical curve is bounded by \((D-1)^{n-1}-\mathfrak{d}\) where \(\mathfrak{d}\) is the sum of the degrees of the positive dimensional components of the ideal \(\langle \frac{\partial f}{\partial X_1}, \ldots,\frac{\partial f}{\partial X_n}\rangle\).

We also provide complexity estimates on the number of arithmetic operations performed by a probabilistic version of our algorithm.

Practical experiments at the end of the paper show the relevance and the importance of these results which improve significantly in practice previous contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alcazar, J.G., Schicho, J., Sendra, J.R.: A delineability-based method for computing critical sets of algebraic surfaces. J. Symb. Comput. 42(6), 678–691 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bank, B., Giusti, M., Heintz, J., Pardo, L.-M.: Generalized polar varieties and efficient real elimination procedure. Kybernetika 40(5), 519–550 (2004)

    MathSciNet  Google Scholar 

  3. Basu, S., Pollack, R., Roy, M.-F.: Algorithms in real algebraic geometry. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  4. Benedetti, R., Risler, J.-J.: Real algebraic and semi-algebraic sets. Actualités Mathématiques, Hermann (1990)

    Google Scholar 

  5. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Brakhage, H. (ed.) GI Fachtagung 1975. LNCS, vol. 33, pp. 515–532. Springer, Heidelberg (1975)

    Google Scholar 

  6. Corvez, S., Rouillier, F.: Using computer algebra tools to classify serial manipulators. In: Winkler, F. (ed.) ADG 2002. LNCS (LNAI), vol. 2930, pp. 31–43. Springer, Heidelberg (2004)

    Google Scholar 

  7. Everett, H., Lazard, D., Lazard, S., Safey El Din, M.: The topology of the Voronoi diagram of three lines in . In: Proceedings of Symposium on Computational Geometry. ACM Press, South-Korea (2007)

    Google Scholar 

  8. Faugère, J.-C.: Gb/FGb, http://fgbrs.lip6.fr

  9. Fulton, W.: Intersection Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 2. Springer, Heidelberg (1984)

    MATH  Google Scholar 

  10. Gao, X.-S., Hou, X.-R., Tang, J., Cheng, H.-F.: Complete Solution Classification for the Perspective-Three-Point Problem. IEEE Trans. Pattern Anal. Mach. Intell. 25(8), 930–943 (2003)

    Article  Google Scholar 

  11. Giusti, M., Heintz, J., Morais, J.-E., Morgenstern, J., Pardo, L.-M.: Straight-line programs in geometric elimination theory. Journal of Pure and Applied Algebra 124, 101–146 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Giusti, M., Lecerf, G., Salvy, B.: A Gröbner free alternative for polynomial system solving. Journal of Complexity 17(1), 154–211 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Grigoriev, D., Vorobjov, N.: Solving systems of polynomials inequalities in subexponential time. Journal of Symbolic Computation 5, 37–64 (1988)

    Article  MathSciNet  Google Scholar 

  14. Jelonek, Z., Kurdyka, K.: On asymptotic critical values of a complex polynomial. Journal für die Reine und Angewandte Mathematik 565, 1–11 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lazard, D.: Quantifier elimination: optimal solution for two classical examples. Journal of Symbolic Computation 5(1-2), 261–266 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lazard, D., Rouillier, F.: Solving parametric polynomial systems. Journal of Symbolic Computation 42, 636–667 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lecerf, G.: Kronecker magma package for solving polynomial systems, http://www.math.uvsq.fr/~lecerf/software/

  18. Lax, A., Lax, P.: On sums of squares. Linear Algebra App. 20, 71–75 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lecerf, G.: Computing the equidimensional decomposition of an algebraic closed set by means of lifting fibers. Journal of Complexity 19(4), 564–596 (2003)

    Article  MathSciNet  Google Scholar 

  20. Kurdyka, K., Orro, P., Simon, S.: Semi-algebraic Sard’s theorem for generalized critical values. Journal of differential geometry 56, 67–92 (2000)

    MATH  MathSciNet  Google Scholar 

  21. Rouillier, F.: RS, RealSolving, http://fgbrs.lip6.fr

  22. Rouillier, F.: Solving zero-dimensional systems through the Rational Univariate Representation. AAECC Journal 9(5), 433–461 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  23. Rouillier, F., Zimmermann, P.: Efficient isolation of polynomial real roots. Journal of Computational and Applied Mathematics 162(1), 33–50 (2003)

    Article  MathSciNet  Google Scholar 

  24. Safey El Din, M.: RAGLib (Real Algebraic Geometry Library) (September 2007), http://www-spiral.lip6.fr/~safey/RAGLib

  25. Safey El Din, M., Schost, É.: Polar varieties and computation of one point in each connected component of a smooth real algebraic set. In: Proceedings of the 2003 international symposium on Symbolic and algebraic computation, pp. 224–231. ACM Press, New York (2003)

    Chapter  Google Scholar 

  26. Safey El Din, M., Schost, É.: Properness defects of projections and computation of one point in each connected component of a real algebraic set. Discrete and Computational Geometry 32(3), 417–430 (2004)

    MATH  MathSciNet  Google Scholar 

  27. Safey El Din, M.: Generalized critical values and solving polynomial inequalities. In: Proceedings of International Conference on Polynomial Systems (2004)

    Google Scholar 

  28. Safey El Din, M.: Testing sign conditions on a multivariate polynomial and applications. Mathematics in Computer Science, Special issue on Algorithms and Complexity 1(1), 177–207 (2007)

    MATH  MathSciNet  Google Scholar 

  29. Schost, E.: Computing Parametric Geometric Resolutions. Journal of Applicable Algebra in Engineering, Communication and Computing 13(5), 349–393 (2003)

    Article  MathSciNet  Google Scholar 

  30. Schweighofer, M.: Global optimization of polynomials using gradient tentacles and sums of squares. SIAM Journal on Optimization 17(3), 920–942 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Deepak Kapur

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Safey El Din, M. (2008). Practical and Theoretical Issues for the Computation of Generalized Critical Values of a Polynomial Mapping. In: Kapur, D. (eds) Computer Mathematics. ASCM 2007. Lecture Notes in Computer Science(), vol 5081. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87827-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87827-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87826-1

  • Online ISBN: 978-3-540-87827-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics