Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Experimental Analysis of Robinson-Foulds Distance Matrix Algorithms

  • Conference paper
Algorithms - ESA 2008 (ESA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5193))

Included in the following conference series:

Abstract

In this paper, we study two fast algorithms—HashRF and PGM-Hashed—for computing the Robinson-Foulds (RF) distance matrix between a collection of evolutionary trees. The RF distance matrix represents a tremendous data-mining opportunity for helping biologists understand the evolutionary relationships depicted among their trees. The novelty of our work results from using a variety of different architecture- and implementation-independent measures (i.e., percentage of bipartition sharing, number of bipartition comparisons, and memory usage) in addition to CPU time to explore practical algorithmic performance. Overall, our study concludes that HashRF performs better across the various performance measures than its competitor, PGM-Hashed. Thus, the HashRF algorithm provides scientists with a fast approach for understanding the evolutionary relationships among a set of trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hillis, D.M., Heath, T.A., John, K.S.: Analysis and visualization of tree space. Syst. Biol. 54(3), 471–482 (2005)

    Article  Google Scholar 

  2. Sul, S.J., Williams, T.L.: A randomized algorithm for comparing sets of phylogenetic trees. In: Proc. Fifth Asia Pacific Bioinformatics Conference (APBC 2007), pp. 121–130 (2007)

    Google Scholar 

  3. Sul, S.J., Williams, T.L.: HashRF: a fast algorithm for computing the Robinson-Foulds distance matrix. Technical Report TR-CS-2008-6-1, Department of Computer Science, Texas A& M University (2008), http://www.cs.tamu.edu/academics/tr/tamu-cs-tr-2008-6-1

  4. Pattengale, N., Gottlieb, E., Moret, B.: Efficiently computing the Robinson-Foulds metric. Journal of Computational Biology 14(6), 724–735 (2007)

    Article  MathSciNet  Google Scholar 

  5. Robinson, D.F., Foulds, L.R.: Comparison of phylogenetic trees. Mathematical Biosciences 53, 131–147 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  6. Day, W.H.E.: Optimal algorithms for comparing trees with labeled leaves. Journal Of Classification 2, 7–28 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  7. Amenta, N., Clarke, F., John, K.S.: A linear-time majority tree algorithm. In: Workshop on Algorithms in Bioinformatics. LNCS, vol. 2168, pp. 216–227 (2003)

    Google Scholar 

  8. Bortolussi, N., Durand, E., Blum, M., Franois, O.: apTreeshape: statistical analysis of phylogenetic tree shape. Bioinformatics 22(3), 363–364 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Dan Halperin Kurt Mehlhorn

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sul, SJ., Williams, T.L. (2008). An Experimental Analysis of Robinson-Foulds Distance Matrix Algorithms. In: Halperin, D., Mehlhorn, K. (eds) Algorithms - ESA 2008. ESA 2008. Lecture Notes in Computer Science, vol 5193. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87744-8_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87744-8_66

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87743-1

  • Online ISBN: 978-3-540-87744-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics