Nothing Special   »   [go: up one dir, main page]

Skip to main content

Faster Swap Edge Computation in Minimum Diameter Spanning Trees

  • Conference paper
Algorithms - ESA 2008 (ESA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5193))

Included in the following conference series:

Abstract

In network communication systems, frequently messages are routed along a minimum diameter spanning tree (MDST) of the network, to minimize the maximum travel time of messages. When a transient failure disables an edge of the MDST, the network is disconnected, and a temporary replacement edge must be chosen, which should ideally minimize the diameter of the new spanning tree. Preparing for the failure of any edge of the MDST, the all-best-swaps (ABS) problem asks for finding the best swap for every edge of the MDST. Given a 2-edge-connected weighted graph G = (V,E), where |V| = n and |E| = m, we solve the ABS problem in \( O\left( m\log n \right) \) time and O(m ) space, thus considerably improving upon the decade-old previously best solution, which requires \(O(n\sqrt{m})\) time and O(m) space, for \(m=o\left(n^2/ \log^2 n\right)\).

We gratefully acknowledge the support of the Swiss SBF under contract no. C05.0047 within COST-295 (DYNAMO) of the European Union.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Di Salvo, A., Proietti, G.: Swapping a Failing Edge of a Shortest Paths Tree by Minimizing the Average Stretch Factor. Theor. Comp. Sci. 383(1), 23–33 (2007)

    Article  MATH  Google Scholar 

  2. Flocchini, P., Enriques, A.M., Pagli, L., Prencipe, G., Santoro, N.: Point-of-failure Shortest-path Rerouting: Computing the Optimal Swap Edges Distributively. IEICE Transactions on Information and Systems E89-D(2), 700–708 (2006)

    Article  Google Scholar 

  3. Flocchini, P., Pagli, L., Prencipe, G., Santoro, N., Widmayer, P.: Computing All the Best Swap Edges Distributively. Journal of Parallel and Distributed Computing (in press, 2008)

    Google Scholar 

  4. Fredman, M.L., Tarjan, R.E.: Fibonacci Heaps and Their Uses in Improved Network Optimization Algorithms. J. ACM 34(3), 596–615 (1987)

    Article  MathSciNet  Google Scholar 

  5. Gfeller, B.: Faster swap edge computation in minimum diameter spanning trees. Technical Report 597, ETH Zurich (June 2008), http://www.inf.ethz.ch/research/disstechreps/techreports

  6. Gfeller, B., Santoro, N., Widmayer, P.: A Distributed Algorithm for Finding All Best Swap Edges of a Minimum Diameter Spanning Tree. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 268–282. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Harel, D., Tarjan, R.E.: Fast Algorithms for Finding Nearest Common Ancestors. SIAM Journal on Computing 13(2), 338–355 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ito, H., Iwama, K., Okabe, Y., Yoshihiro, T.: Single Backup Table Schemes for Shortest-path Routing. Theor. Comp. Sci. 333(3), 347–353 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Nardelli, E., Proietti, G., Widmayer, P.: Finding All the Best Swaps of a Minimum Diameter Spanning Tree Under Transient Edge Failures. Journal of Graph Algorithms and Applications 5(5), 39–57 (2001)

    MATH  MathSciNet  Google Scholar 

  10. Nardelli, E., Proietti, G., Widmayer, P.: Swapping a Failing Edge of a Single Source Shortest Paths Tree Is Good and Fast. Algorithmica 35(1), 56–74 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Proietti, G.: Dynamic Maintenance Versus Swapping: An Experimental Study on Shortest Paths Trees. In: Näher, S., Wagner, D. (eds.) WAE 2000. LNCS, vol. 1982, pp. 207–217. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  12. Wu, B.Y., Hsiao, C.-Y., Chao, K.-M.: The Swap Edges of a Multiple-Sources Routing Tree. Algorithmica 50(3), 299–311 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Dan Halperin Kurt Mehlhorn

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gfeller, B. (2008). Faster Swap Edge Computation in Minimum Diameter Spanning Trees. In: Halperin, D., Mehlhorn, K. (eds) Algorithms - ESA 2008. ESA 2008. Lecture Notes in Computer Science, vol 5193. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87744-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87744-8_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87743-1

  • Online ISBN: 978-3-540-87744-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics