Nothing Special   »   [go: up one dir, main page]

Skip to main content

Improved Approximation Algorithms for Relay Placement

  • Conference paper
Algorithms - ESA 2008 (ESA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5193))

Included in the following conference series:

Abstract

In the relay placement problem the input is a set of sensors and a number r ≥ 1, the communication range of a relay. The objective is to place a minimum number of relays so that between every pair of sensors there is a path through sensors and/or relays such that the consecutive vertices of the path are within distance r if both vertices are relays and within distance 1 otherwise. We present a 3.11-approximation algorithm, and show that the problem admits no PTAS, assuming P\({}\ne{}\)NP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chen, D., Du, D.Z., Hu, X.D., Lin, G.H., Wang, L., Xue, G.: Approximations for Steiner trees with minimum number of Steiner points. Journal of Global Optimization 18(1), 17–33 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Chen, D., Du, D.Z., Hu, X.D., Lin, G.H., Wang, L., Xue, G.: Approximations for Steiner trees with minimum number of Steiner points. Theoretical Computer Science 262(1–2), 83–99 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cheng, X., Du, D.Z., Wang, L., Xu, B.: Relay sensor placement in wireless sensor networks. Wireless Networks (to appear, 2007)

    Google Scholar 

  4. Liu, H., Wan, P.J., Jia, X.: Fault-tolerant relay node placement in wireless sensor networks. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 230–239. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Lloyd, E.L., Xue, G.: Relay node placement in wireless sensor networks. IEEE Transactions on Computers 56(1), 134–138 (2007)

    Article  Google Scholar 

  6. Srinivas, A., Zussman, G., Modiano, E.: Mobile backbone networks – construction and maintenance. In: Proc. 7th ACM International Symposium on Mobile Ad Hoc Networking and Computing, MobiHoc, Florence, Italy, May 2006, pp. 166–177. ACM Press, New York (2006)

    Google Scholar 

  7. Zhang, W., Xue, G., Misra, S.: Fault-tolerant relay node placement in wireless sensor networks: Problems and algorithms. In: Proc. 26th IEEE International Conference on Computer Communications, INFOCOM, Anchorage, Alaska, USA, May 2007, pp. 1649–1657. IEEE, Piscataway (2007)

    Chapter  Google Scholar 

  8. Bredin, J.L., Demaine, E.D., Hajiaghayi, M., Rus, D.: Deploying sensor networks with guaranteed capacity and fault tolerance. In: Proc. 6th ACM International Symposium on Mobile Ad Hoc Networking and Computing, MobiHoc, Urbana-Champaign, IL, USA, May 2005, pp. 309–319. ACM Press, New York (2005)

    Chapter  Google Scholar 

  9. Cerdeira, J.O., Pinto, L.S.: Requiring connectivity in the set covering problem. Journal of Combinatorial Optimization 9(1), 35–47 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Shuai, T.P., Hu, X.D.: Connected set cover problem and its applications. In: Cheng, S.-W., Poon, C.K. (eds.) AAIM 2006. LNCS, vol. 4041, pp. 243–254. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Yang, Y., Lin, M., Xu, J., Xie, Y.: Minimum spanning tree with neighborhoods. In: Kao, M.-Y., Li, X.-Y. (eds.) AAIM 2007. LNCS, vol. 4508, pp. 306–316. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Du, D.Z., Hwang, F.: An approach for proving lower bounds: Solution of Gilbert–Pollak’s conjecture on Steiner ratio. In: Proc. 31st Annual Symposium on Foundations of Computer Science, FOCS, St. Louis, MO, USA, October 1990, pp. 76–85. IEEE, Piscataway (1990)

    Chapter  Google Scholar 

  13. Berman, P., Karpinski, M.: On some tighter inapproximability results. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 200–209. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Dan Halperin Kurt Mehlhorn

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Efrat, A., Fekete, S.P., Gaddehosur, P.R., Mitchell, J.S.B., Polishchuk, V., Suomela, J. (2008). Improved Approximation Algorithms for Relay Placement. In: Halperin, D., Mehlhorn, K. (eds) Algorithms - ESA 2008. ESA 2008. Lecture Notes in Computer Science, vol 5193. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87744-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87744-8_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87743-1

  • Online ISBN: 978-3-540-87744-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics