Nothing Special   »   [go: up one dir, main page]

Skip to main content

A New Approach to Exact Crossing Minimization

  • Conference paper
Algorithms - ESA 2008 (ESA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5193))

Included in the following conference series:

Abstract

The crossing number problem is to find the smallest number of edge crossings necessary when drawing a graph into the plane. Eventhough the problem is NP-hard, we are interested in practically efficient algorithms to solve the problem to provable optimality. In this paper, we present a novel integer linear programming (ILP) formulation for the crossing number problem. The former formulation [4] had to transform the crossing number polytope into a higher-dimensional polytope. The key idea of our approach is to directly consider the natural crossing number polytope and cut it with multiple linear-ordering polytopes. This leads to a more compact formulation, both in terms of variables and constraints.

We describe a Branch-and-Cut algorithm, together with a combinatorial column generation scheme, in order to solve the crossing number problem to provable optimality. Our experiments show that the new approach is more effective than the old one, even when considering a heavily improved version of the former formulation (also presented in this paper). For the first time, we are able to solve graphs with a crossing number of up to 37.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: algorithms for the visualization of graphs. Prentice-Hall, Englewood Cliffs (1999)

    MATH  Google Scholar 

  2. Di Battista, G., Garg, A., Liotta, G., Tamassia, R., Tassinari, E., Vargiu, F.: An experimental comparison of four graph drawing algorithms. Comput. Geom. Theory Appl. 7(5-6), 303–325 (1997)

    MATH  Google Scholar 

  3. Boyer, J.M., Myrvold, W.J.: On the cutting edge: Simplified O(n) planarity by edge addition. Journal of Graph Algorithms an Applications 8(3), 241–273 (2004)

    MATH  MathSciNet  Google Scholar 

  4. Buchheim, C., Chimani, M., Ebner, D., Gutwenger, C., Jünger, M., Klau, G.W., Mutzel, P., Weiskircher, R.: A branch-and-cut approach to the crossing number problem. Discrete Optimization 5, 373–388 (2008); (Memory of George B. Dantzig)

    Article  MathSciNet  Google Scholar 

  5. Buchheim, C., Jünger, M., Menze, A., Percan, M.: Bimodal crossing minimization. In: Chen, D.Z., Lee, D.T. (eds.) COCOON 2006. LNCS, vol. 4112, pp. 497–506. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Chimani, M., Gutwenger, C.: Algorithms for the hypergraph and the minor crossing number problems. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 184–195. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Chimani, M., Gutwenger, C.: Non-planar core reduction of graphs. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 223–234. Springer, Heidelberg (2006)

    Google Scholar 

  8. Chimani, M., Gutwenger, C., Mutzel, P.: Experiments on exact crossing minimization using column generation. In: Àlvarez, C., Serna, M. (eds.) WEA 2006. LNCS, vol. 4007, pp. 303–315. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Chimani, M., Jünger, M., Schulz, M.: Crossing minimization meets simultaneous drawing. In: Proc. IEEE PacificVis 2008 (2008)

    Google Scholar 

  10. Chimani, M., Mutzel, P., Schmidt, J.M.: Efficient extraction of multiple kuratowski subdivisions. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 159–170. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Gutwenger, C., Mutzel, P.: An experimental study of crossing minimization heuristics. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 13–24. Springer, Heidelberg (2004)

    Google Scholar 

  12. Gutwenger, C., Mutzel, P., Weiskircher, R.: Inserting an edge into a planar graph. Algorithmica 41(4), 289–308 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kleitman, D.J.: The crossing number of K 5,n . J. Comb. Theory 9, 315–323 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kleitman, D.J.: A note on the parity of the number of crossings of a graph. J. Comb. Theory, Ser. B 21(1), 88–89 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kratochvíl, J.: String graphs II: Recognizing string graphs is NP-hard. J. Combin. Theory Ser. B 52, 67–78 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kuratowski, C.: Sur le problème des courbes gauches en topologie. Fund. Math. 15, 271–283 (1930)

    MATH  Google Scholar 

  17. OGDF – Open Graph Drawing Framework (2008), http://www.ogdf.net

  18. Pach, J., Tóth, G.: Which crossing number is it anyway? J. Comb. Theory Ser. B 80(2), 225–246 (2000)

    Article  MATH  Google Scholar 

  19. Schaefer, M., Sedgwick, E., Štefankovič, D.: Recognizing string graphs in NP. Journal of Computer and System Sciences 67(2), 365–380 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Vrt’o, I.: Crossing numbers of graphs: A bibliography (2007), ftp://ftp.ifi.savba.sk/pub/imrich/crobib.pdf

Download references

Author information

Authors and Affiliations

Authors

Editor information

Dan Halperin Kurt Mehlhorn

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chimani, M., Mutzel, P., Bomze, I. (2008). A New Approach to Exact Crossing Minimization. In: Halperin, D., Mehlhorn, K. (eds) Algorithms - ESA 2008. ESA 2008. Lecture Notes in Computer Science, vol 5193. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87744-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87744-8_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87743-1

  • Online ISBN: 978-3-540-87744-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics