Nothing Special   »   [go: up one dir, main page]

Skip to main content

Improved Multilabel Classification with Neural Networks

  • Conference paper
Parallel Problem Solving from Nature – PPSN X (PPSN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5199))

Included in the following conference series:

Abstract

This paper considers the multilabel classification problem, which is a generalization of traditional two-class or multi-class classification problem. In multilabel classification a set of labels (categories) is given and each training instance is associated with a subset of this label-set. The task is to output the appropriate subset of labels (generally of unknown size) for a given, unknown testing instance. Some improvements to the existing neural network multilabel classification algorithm, named BP-MLL, are proposed here. The modifications concern the form of the global error function used in BP-MLL. The modified classification system is tested in the domain of functional genomics, on the yeast genome data set. Experimental results show that proposed modifications visibly improve the performance of the neural network based multilabel classifier. The results are statistically significant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zhang, M.L., Zhou, Z.H.: Multilabel Neural Networks with Applications to Functional Genomics and Text Categorization. IEEE Transactions on Knowledge and Data Engineering 18(10), 1338–1351 (2006)

    Article  Google Scholar 

  2. LIBSUM Data: Multilabel Classification, http://www.csie.ntu.tw/~cjlin/libsumtools/datasets/multilabel.html#yeast

  3. Elissef, A., Weston, J.: A Kernel Method for Multi-Labelled Classification. In: Dietterich, T.G., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems, vol. 14, pp. 681–687 (2002)

    Google Scholar 

  4. Clare, A., King, R.D.: Knowledge Discovery in Multi-Label Phenotype Data. In: Siebes, A., De Raedt, L. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, pp. 42–53. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Pavlidis, P., Weston, J., Cai, J., Grundy, W.N.: Combining Microarray Expression Data and Phylogenetic Profiles to Learn Functional Categories using Support Vector Machines. In: 5th Annual International Conference Computational Molecular Biology (RECOMB 2001), pp. 242–248 (2001)

    Google Scholar 

  6. McCallum, A.: Multi-Label Text Classification with a Mixture Model Trained by EM. In: Working Notes Am. Assoc. Artificial Intelligence Workshop Text Learning (AAAI 1999) (1999)

    Google Scholar 

  7. Schapire, R.E., Singer, Y.: BoosTexter: A Boosting-Based System for Text Categorization. Machine Learning 39(2/3), 135–168 (2000)

    Article  MATH  Google Scholar 

  8. Kazawa, H., Izumitani, T., Taira, H., Maeda, E.: Maximal Margin Labeling for Multi-Topic Text Categorization. In: Saul, L.K., Weiss, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems, vol. 17, pp. 649–656 (2005)

    Google Scholar 

  9. Werbos, P.J.: Beyond Regression: New Tools for Prediction and Anlysis in the Behavioral Sciences. PhD thesis, Harvard University (1974)

    Google Scholar 

  10. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning Internal Representations by Error Propagation. In: Rumelhart, D.E., McClelland, J.L. (eds.) Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1, pp. 318–362 (1986)

    Google Scholar 

  11. Comite, F.D., Gilleron, R., Tommasi, M.: Learning Multi-Label Alternating Decision Tree from Texts and Data. In: Perner, P., Rosenfeld, A. (eds.) MLDM 2003. LNCS, vol. 2734, pp. 35–49. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grodzicki, R., Mańdziuk, J., Wang, L. (2008). Improved Multilabel Classification with Neural Networks. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds) Parallel Problem Solving from Nature – PPSN X. PPSN 2008. Lecture Notes in Computer Science, vol 5199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87700-4_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87700-4_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87699-1

  • Online ISBN: 978-3-540-87700-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics