Abstract
This paper considers the multilabel classification problem, which is a generalization of traditional two-class or multi-class classification problem. In multilabel classification a set of labels (categories) is given and each training instance is associated with a subset of this label-set. The task is to output the appropriate subset of labels (generally of unknown size) for a given, unknown testing instance. Some improvements to the existing neural network multilabel classification algorithm, named BP-MLL, are proposed here. The modifications concern the form of the global error function used in BP-MLL. The modified classification system is tested in the domain of functional genomics, on the yeast genome data set. Experimental results show that proposed modifications visibly improve the performance of the neural network based multilabel classifier. The results are statistically significant.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Zhang, M.L., Zhou, Z.H.: Multilabel Neural Networks with Applications to Functional Genomics and Text Categorization. IEEE Transactions on Knowledge and Data Engineering 18(10), 1338–1351 (2006)
LIBSUM Data: Multilabel Classification, http://www.csie.ntu.tw/~cjlin/libsumtools/datasets/multilabel.html#yeast
Elissef, A., Weston, J.: A Kernel Method for Multi-Labelled Classification. In: Dietterich, T.G., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems, vol. 14, pp. 681–687 (2002)
Clare, A., King, R.D.: Knowledge Discovery in Multi-Label Phenotype Data. In: Siebes, A., De Raedt, L. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, pp. 42–53. Springer, Heidelberg (2001)
Pavlidis, P., Weston, J., Cai, J., Grundy, W.N.: Combining Microarray Expression Data and Phylogenetic Profiles to Learn Functional Categories using Support Vector Machines. In: 5th Annual International Conference Computational Molecular Biology (RECOMB 2001), pp. 242–248 (2001)
McCallum, A.: Multi-Label Text Classification with a Mixture Model Trained by EM. In: Working Notes Am. Assoc. Artificial Intelligence Workshop Text Learning (AAAI 1999) (1999)
Schapire, R.E., Singer, Y.: BoosTexter: A Boosting-Based System for Text Categorization. Machine Learning 39(2/3), 135–168 (2000)
Kazawa, H., Izumitani, T., Taira, H., Maeda, E.: Maximal Margin Labeling for Multi-Topic Text Categorization. In: Saul, L.K., Weiss, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems, vol. 17, pp. 649–656 (2005)
Werbos, P.J.: Beyond Regression: New Tools for Prediction and Anlysis in the Behavioral Sciences. PhD thesis, Harvard University (1974)
Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning Internal Representations by Error Propagation. In: Rumelhart, D.E., McClelland, J.L. (eds.) Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1, pp. 318–362 (1986)
Comite, F.D., Gilleron, R., Tommasi, M.: Learning Multi-Label Alternating Decision Tree from Texts and Data. In: Perner, P., Rosenfeld, A. (eds.) MLDM 2003. LNCS, vol. 2734, pp. 35–49. Springer, Heidelberg (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Grodzicki, R., Mańdziuk, J., Wang, L. (2008). Improved Multilabel Classification with Neural Networks. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds) Parallel Problem Solving from Nature – PPSN X. PPSN 2008. Lecture Notes in Computer Science, vol 5199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87700-4_41
Download citation
DOI: https://doi.org/10.1007/978-3-540-87700-4_41
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-87699-1
Online ISBN: 978-3-540-87700-4
eBook Packages: Computer ScienceComputer Science (R0)