Abstract
Preservation of the road assets value in an efficient manner is an important aim for developed road administrations. The task requires accurate road maintenance that is planned in advance. Forecasting road condition in the future is a prerequisite for optimisation of maintenance treatments. In this study two hybrid methods are introduced for forecasting road roughness and rutting. Markovian models outperform artificial neural network models and roughness can be forecast more accurately than rutting.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arthur, D., Vassilvitskii, S.: k-means++ The Advantages of Careful Seeding. In: Symposium on Discrete Algorithms (SODA) (2007)
International Road Federation. IRF World Road Statistics 2006. International Road Federation, Geneva, Switzerland (2006)
Finnish Road Administration. PMSPro:n kuntoennustemallit 2004. Tiehallinnon selvityksiä 9/2005. Finnish Road Administration, Helsinki, Finland (2005)
Finnish Road Administration. Finnish Road Statistics 2006. Edita Prima Oy. Helsinki, Finland (2007)
Foresee, D., Hagan, M.: Gauss-Newton Approximation to Bayesian Learning. In: Proceedings of the International Joint Conference on Neural Networks (June 1997)
Hand, D., Mannila, H., Smyth, P.: Principles of Data Mining. MIT Press, Cambridge (2001)
Haykin, S.: Neural Networks. A comprehensive foundation. Prentice-Hall, London (1999)
Kuntorekisteri (Road condition database), Tiesäätietokanta (Road weather database), LAM tietokanta (Database of automatic traffic counts), Finnish Road Administration (2008)
Saarenketo, T.: Developing drainage guidelines for maintenance contracts. Results of a ROADEX III pilot project in Rovaniemi Maintenance Area in Finland. Roadscanners Oy. Rovaniemi, Finland (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sirvio, K., Hollmén, J. (2008). Spatio-temporal Road Condition Forecasting with Markov Chains and Artificial Neural Networks. In: Corchado, E., Abraham, A., Pedrycz, W. (eds) Hybrid Artificial Intelligence Systems. HAIS 2008. Lecture Notes in Computer Science(), vol 5271. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87656-4_26
Download citation
DOI: https://doi.org/10.1007/978-3-540-87656-4_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-87655-7
Online ISBN: 978-3-540-87656-4
eBook Packages: Computer ScienceComputer Science (R0)