Abstract
The visual perception of contours by the brain is selective. When embedded within a noisy background, closed contours are detected faster, and with higher certainty, than open contours. We investigate this phenomenon theoretically with the paradigmatic excitable FitzHugh-Nagumo model, by considering a set of locally coupled oscillators subject to local uncorrelated noise. Noise is needed to overcome the excitation threshold and evoke spikes. We model one-dimensional structures and consider the synchronization throughout them as a mechanism for contour perception, for various system sizes and local noise intensities. The model with a closed ring structure shows a significantly higher synchronization than the one with the open structure. Interestingly, the effect is most pronounced for intermediate system sizes and noise intensities.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Singer, W.: Neuronal synchrony: A versatile code for the definition of relations? Neuron 24(1), 49–65 (1999)
Gray, C.M., König, P., Engel, A.K., Singer, W.: Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338, 334–337 (1989)
Castelo-Branco, M., Goebel, R., Neuenschwander, S., Singer, W.: Neural synchrony correlates with surface segregation rules. Nature 405, 685–689 (2000)
Sarpeshkar, R.: Analog versus digital: Extrapolating from electronics to neurobiology. Neural Comput. 10(7), 1601–1638 (1998)
Mori, T., Kai, S.: Noise-induced entrainment and stochastic resonance in human brain waves. Phys. Rev. Lett. 88, 218101 (2002)
Lee, S., Neiman, A., Kim, S.: Coherence resonance in a hodgkin-huxley neuron. Phys. Rev. E 57, 3292 (1998)
Pikovsky, A., Kurths, J.: Coherence resonance in a noise-driven excitable system. Phys. Rev. Lett. 78, 775 (1997)
Lindner, B., Schimansky-Geier, L., Longtin, A.: Maximizing spike train coherence or incoherence in the leaky integrate-and-fire model. Phys. Rev. E 66, 31916 (2002)
Longtin, A.: Autonomous stochastic resonance in bursting neurons. Phys. Rev. E 55, 868 (1997)
Palenzuela, C., Toral, R., Mirasso, C., Calvo, O., Gunton, J.: Coherence resonance in chaotic systems. Europhys. Lett. 56(3), 347–353 (2001)
Ganopolski, A., Rahmstorf, S.: Abrupt glacial climate changes due to stochastic resonance. Phys. Rev. Lett. 88, 038501 (2002)
Dubbeldam, J.L.A., Krauskopf, B., Lenstra, D.: Excitability and coherence resonance in lasers with saturable absorber. Phys. Rev. E 60, 6580–6588 (1999)
Buldú, J.M., García-Ojalvo, J., Mirasso, C.R., Torrent, M.C., Sancho, J.M.: Effect of external noise correlation in optical coherence resonance. Phys. Rev. E 64, 051109 (2001)
Hu, B., Zhou, C.: Phase synchronization in coupled nonidentical excitable systems and array-enhanced coherence resonance. Phys. Rev. E 61(2), R1001–R1004 (2000)
Keener, J.P., Sneyd, J.: Mathematical Physiology. Springer, New York (1998)
FitzHugh, R.A.: Impulses and physiological states in models of nerve membrane. Biophys. J. 1, 445–466 (1961)
Nagumo, J., Arimoto, S., Yoshitzawa, S.: An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061 (1962)
Mikhailov, A.S.: Foundations of Synergetics, 2nd edn. Springer, Berlin (1994)
García-Ojalvo, J., Elowitz, M.B., Strogatz, S.H.: Modeling a synthetic multicellular clock: Repressilators coupled by quorum sensing. Proc. Natl. Acad. Sci. U.S.A 101(30), 10955–10960 (2004)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ullner, E., Vicente, R., Pipa, G., García-Ojalvo, J. (2008). Contour Integration and Synchronization in Neuronal Networks of the Visual Cortex. In: Kůrková, V., Neruda, R., Koutník, J. (eds) Artificial Neural Networks - ICANN 2008. ICANN 2008. Lecture Notes in Computer Science, vol 5164. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87559-8_73
Download citation
DOI: https://doi.org/10.1007/978-3-540-87559-8_73
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-87558-1
Online ISBN: 978-3-540-87559-8
eBook Packages: Computer ScienceComputer Science (R0)