Nothing Special   »   [go: up one dir, main page]

Skip to main content

Effect of the Background Activity on the Reconstruction of Spike Train by Spike Pattern Detection

  • Conference paper
Artificial Neural Networks - ICANN 2008 (ICANN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5164))

Included in the following conference series:

  • 2449 Accesses

Abstract

Deterministic nonlinearity has been observed in experimental electrophysiological recordings performed in several areas of the brain. However, little is known about the ability to transmit a complex temporally organized activity through different types of spiking neurons. This study investigates the response of a spiking neuron model representing five archetypical types to input spike trains including deterministic information generated by a chaotic attractor. The comparison between input and output spike trains is carried out by the pattern grouping algorithm (PGA) as a function of the intensity of the background activity for each neuronal type. The results show that the thalamo-cortical, regular spiking and intrinsically busting model neurons can be good candidate in transmitting temporal information with different characteristics in a spatially organized neural network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mpitsos, G.J.: Chaos in brain function and the problem of nonstationarity: a commentary. In: Basar, E., Bullock, T.H. (eds.) Dynamics of sensory and cognitive processing by the brain, pp. 521–535. Springer, Heidelberg (1989)

    Google Scholar 

  2. Celletti, A., Villa, A.E.P.: Low dimensional chaotic attractors in the rat brain. Biological Cybernetics 74, 387–394 (1996)

    Article  Google Scholar 

  3. Villa, A.E.P., Tetko, I.V., Celletti, A., Riehle, A.: Chaotic dynamics in the primate motor cortex depend on motor preparation in a reaction-time task. Current Psychology of Cognition 17, 763–780 (1998)

    Google Scholar 

  4. Tetko, I.V., Villa, A.E.: A comparative study of pattern detection algorithm and dynamical system approach using simulated spike trains. In: ICANN 1997. LNCS, vol. 1327, pp. 37–42. Springer, Heidelberg (1997)

    Google Scholar 

  5. Asai, Y., Yokoi, T., Villa, A.E.P.: Detection of a dynamical system attractor from spike train analysis. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4131, pp. 623–631. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Tetko, I.V., Villa, A.E.P.: A pattern grouping algorithm for analysis of spatiotemporal patterns in neuronal spike trains. 1. detection of repeated patterns. J. Neurosci. Meth. 105, 1–14 (2001)

    Article  Google Scholar 

  7. Abeles, M., Gat, I.: Detecting precise firing sequences in experimental data. Journal of Neuroscience Methods 107, 141–154 (2001)

    Article  Google Scholar 

  8. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Transactions on Neural Networks 14, 1569–1572 (2003)

    Article  Google Scholar 

  9. Izhikevich, E.M.: Which model to use for cortical spiking neurons? IEEE Transactions on Neural Networks 15, 1063–1070 (2004)

    Article  Google Scholar 

  10. Zaslavskii, G.M.: The simplest case of a strange attractor. Phys. Let. 69A, 145–147 (1978)

    Article  MathSciNet  Google Scholar 

  11. Villa, A.E.P., Tetko, I.V.: Spatiotemporal activity patterns detected from single cell measurements from behaving animals. Proceedings SPIE 3728, 20–34 (1999)

    Article  Google Scholar 

  12. Villa, A.E.P.: Cortical modulation of auditory processing in the thalamus. In: Lomber, S.G., Galuske, R.A.W. (eds.) Virtual lesions: Examining Cortical Function with reversible Deactivation, pp. 83–119. Oxford University Press, Oxford (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Véra Kůrková Roman Neruda Jan Koutník

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Asai, Y., Villa, A.E.P. (2008). Effect of the Background Activity on the Reconstruction of Spike Train by Spike Pattern Detection. In: Kůrková, V., Neruda, R., Koutník, J. (eds) Artificial Neural Networks - ICANN 2008. ICANN 2008. Lecture Notes in Computer Science, vol 5164. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87559-8_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87559-8_63

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87558-1

  • Online ISBN: 978-3-540-87559-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics