Nothing Special   »   [go: up one dir, main page]

Skip to main content

Efficient Feature Selection for PTR-MS Fingerprinting of Agroindustrial Products

  • Conference paper
Artificial Neural Networks - ICANN 2008 (ICANN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5164))

Included in the following conference series:

Abstract

We recently introduced the Random Forest - Recursive Feature Elimination (RF-RFE) algorithm for feature selection. In this paper we apply it to the identification of relevant features in the spectra (fingerprints) produced by Proton Transfer Reaction - Mass Spectrometry (PTR-MS) analysis of four agro-industrial products (two datasets with cultivars of Berries and other two with typical cheeses, all from North Italy). The method is compared with the more traditional Support Vector Machine - Recursive Feature Elimination (SVM-RFE), extended to allow multiclass problems. Using replicated experiments we estimate unbiased generalization errors for both methods. We analyze the stability of the two methods and find that RF-RFE is more stable than SVM-RFE in selecting small subsets of features. Our results also show that RF-RFE outperforms SVM-RFE on the task of finding small subsets of features with high discrimination levels on PTR-MS datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hansel, A., Jordan, A., Holzinger, R., Prazeller, P., Vogel, W., Lindinger, W.: Proton transfer reaction mass spectrometry: on-line trace gas analysis at the ppb level. Int. J. Mass. Spectrom. Ion Procs. 149/150, 609–619 (1995)

    Article  Google Scholar 

  2. Lindinger, W., Hansel, A., Jordan, A.: On-line monitoring of volatile organic compounds at ppt level by means of Proton-Transfer-Reaction Mass Spectrometry (PTR-MS): Medical application, food control and environmental research. Int. J. Mass. Spectrom. Ion Procs. 173, 191–241 (1998)

    Article  Google Scholar 

  3. Biasioli, F., Gasperi, F., Aprea, E., Colato, L., Boscaini, E., Märk, T.D.: Fingerprinting mass spectrometry by PTR-MS: heat treatment vs. pressure treatments of red orange juice - a case study. Int. J. Mass. Spectrom, 223-224, 343-353 (2003)

    Google Scholar 

  4. Biasioli, F., Gasperi, F., Aprea, E., Mott, D., Boscaini, E., Mayr, D., Märk, T.D.: Coupling Proton Transfer Reaction-Mass Spectrometry with Linear Discriminant Analysis: a Case Study. J. Agr. Food Chem. 51, 7227–7233 (2003)

    Article  Google Scholar 

  5. Boscaini, E., Van Ruth, S., Biasioli, F., Gasperi, F., Märk, T.D.: Gas Chromatography-Olfactometry (GC-O) and Proton Transfer Reaction-Mass Spectrometry (PTR-MS). Analysis of the Flavor Profile of Grana Padano, Parmigiano Reggiano, and Grana Trentino Cheeses. J. Agr. Food Chem. 51, 1782–1790 (2003)

    Google Scholar 

  6. Biasioli, F., Gasperi, F., Aprea, E., Endrizzi, I., Framondino, V., Marini, F., Mott, D., Märk, T.D.: Correlation of PTR-MS spectral fingerprints with sensory characterisation of flavour and odour profile of Trentingrana cheese. Food Qual. Prefer. 17, 63–75 (2006)

    Article  Google Scholar 

  7. Guyon, I., Elisseeff, A.: An Introduction to Variable and Feature Selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    Article  MATH  Google Scholar 

  8. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97, 273–324 (1996)

    Article  Google Scholar 

  9. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene Selection for Cancer Classification using Support Vector Machines. Mach. Learn. 46, 389–422 (2002)

    Article  MATH  Google Scholar 

  10. Ambroise, C., McLachlan, G.: Selection bias in gene extraction on the basis of microarray gene-expression data. P. Natl. Acad. Sci. USA 99, 6562–6566 (2002)

    Article  MATH  Google Scholar 

  11. Furlanello, C., Serafini, M., Merler, S., Jurman, G.: Entropy-Based Gene Ranking without Selection Bias for the Predictive Classification of Microarray Data. BMC Bioinformatics 4, 54 (2003)

    Article  Google Scholar 

  12. Ramaswamy, S., et al.: Multiclass cancer diagnosis using tumor gene expression signatures. P. Natl. Acad. Sci. USA 98, 15149–15154 (2001)

    Article  Google Scholar 

  13. Li, H., Ung, C.Y., Yap, C.W., Xue, Y., Li, Z.R., Cao, Z.W., Chen, Y.Z.: Prediction of Genotoxicity of Chemical Compounds by Statistical Learning Methods. Chem. Res. Toxicol. 18, 1071–1080 (2005)

    Article  Google Scholar 

  14. Granitto, P.M., Furlanello, C., Biasioli, F., Gasperi, F.: Recursive feature elimination with random forest for PTR-MS analysis of agroindustrial products. Chemometr. Intell. Lab. 83, 83–90 (2006)

    Article  Google Scholar 

  15. Breiman, L.: Random Forests. Mach. Learn. 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  16. Breiman, L.: Heuristics of instability and stabilization in model selection. Ann. Stat. 24, 2350–2383 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hsu, C.-W., Lin, C.-J.: A comparison of methods for multi-class support vector machines. IEEE T. Neural Networ. 13, 415–425 (2002)

    Article  Google Scholar 

  18. Allwein, E., Schapire, R., Singer, Y.: Reducing Multiclass to Binary: A unified Approach for Margin Classifiers. J. Mach. Learn. Res. 1, 113–141 (2000)

    Article  MathSciNet  Google Scholar 

  19. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    MATH  Google Scholar 

  20. Huang, T.-M., Kecman, V.: Gene extraction for cancer diagnosis by support vector machines. Artif. Intell. Med. 35, 185–194 (2005)

    Article  Google Scholar 

  21. Gasperi, F., Biasioli, F., Framondino, V., Endrizzi, I.: Ruolo dell´analisi sensoriale nella definizione delle caratteristiche dei prodotti tipici: l´esempio dei formaggi trentini / The role of sensory analysis in the characterization of traditional products: the case study of the cheese from Trentino. Sci. Tecn. Latt.-Cas. 55, 345–364 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Véra Kůrková Roman Neruda Jan Koutník

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Granitto, P.M., Biasioli, F., Furlanello, C., Gasperi, F. (2008). Efficient Feature Selection for PTR-MS Fingerprinting of Agroindustrial Products. In: Kůrková, V., Neruda, R., Koutník, J. (eds) Artificial Neural Networks - ICANN 2008. ICANN 2008. Lecture Notes in Computer Science, vol 5164. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87559-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87559-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87558-1

  • Online ISBN: 978-3-540-87559-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics