Abstract
We recently introduced the Random Forest - Recursive Feature Elimination (RF-RFE) algorithm for feature selection. In this paper we apply it to the identification of relevant features in the spectra (fingerprints) produced by Proton Transfer Reaction - Mass Spectrometry (PTR-MS) analysis of four agro-industrial products (two datasets with cultivars of Berries and other two with typical cheeses, all from North Italy). The method is compared with the more traditional Support Vector Machine - Recursive Feature Elimination (SVM-RFE), extended to allow multiclass problems. Using replicated experiments we estimate unbiased generalization errors for both methods. We analyze the stability of the two methods and find that RF-RFE is more stable than SVM-RFE in selecting small subsets of features. Our results also show that RF-RFE outperforms SVM-RFE on the task of finding small subsets of features with high discrimination levels on PTR-MS datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hansel, A., Jordan, A., Holzinger, R., Prazeller, P., Vogel, W., Lindinger, W.: Proton transfer reaction mass spectrometry: on-line trace gas analysis at the ppb level. Int. J. Mass. Spectrom. Ion Procs. 149/150, 609–619 (1995)
Lindinger, W., Hansel, A., Jordan, A.: On-line monitoring of volatile organic compounds at ppt level by means of Proton-Transfer-Reaction Mass Spectrometry (PTR-MS): Medical application, food control and environmental research. Int. J. Mass. Spectrom. Ion Procs. 173, 191–241 (1998)
Biasioli, F., Gasperi, F., Aprea, E., Colato, L., Boscaini, E., Märk, T.D.: Fingerprinting mass spectrometry by PTR-MS: heat treatment vs. pressure treatments of red orange juice - a case study. Int. J. Mass. Spectrom, 223-224, 343-353 (2003)
Biasioli, F., Gasperi, F., Aprea, E., Mott, D., Boscaini, E., Mayr, D., Märk, T.D.: Coupling Proton Transfer Reaction-Mass Spectrometry with Linear Discriminant Analysis: a Case Study. J. Agr. Food Chem. 51, 7227–7233 (2003)
Boscaini, E., Van Ruth, S., Biasioli, F., Gasperi, F., Märk, T.D.: Gas Chromatography-Olfactometry (GC-O) and Proton Transfer Reaction-Mass Spectrometry (PTR-MS). Analysis of the Flavor Profile of Grana Padano, Parmigiano Reggiano, and Grana Trentino Cheeses. J. Agr. Food Chem. 51, 1782–1790 (2003)
Biasioli, F., Gasperi, F., Aprea, E., Endrizzi, I., Framondino, V., Marini, F., Mott, D., Märk, T.D.: Correlation of PTR-MS spectral fingerprints with sensory characterisation of flavour and odour profile of Trentingrana cheese. Food Qual. Prefer. 17, 63–75 (2006)
Guyon, I., Elisseeff, A.: An Introduction to Variable and Feature Selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)
Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97, 273–324 (1996)
Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene Selection for Cancer Classification using Support Vector Machines. Mach. Learn. 46, 389–422 (2002)
Ambroise, C., McLachlan, G.: Selection bias in gene extraction on the basis of microarray gene-expression data. P. Natl. Acad. Sci. USA 99, 6562–6566 (2002)
Furlanello, C., Serafini, M., Merler, S., Jurman, G.: Entropy-Based Gene Ranking without Selection Bias for the Predictive Classification of Microarray Data. BMC Bioinformatics 4, 54 (2003)
Ramaswamy, S., et al.: Multiclass cancer diagnosis using tumor gene expression signatures. P. Natl. Acad. Sci. USA 98, 15149–15154 (2001)
Li, H., Ung, C.Y., Yap, C.W., Xue, Y., Li, Z.R., Cao, Z.W., Chen, Y.Z.: Prediction of Genotoxicity of Chemical Compounds by Statistical Learning Methods. Chem. Res. Toxicol. 18, 1071–1080 (2005)
Granitto, P.M., Furlanello, C., Biasioli, F., Gasperi, F.: Recursive feature elimination with random forest for PTR-MS analysis of agroindustrial products. Chemometr. Intell. Lab. 83, 83–90 (2006)
Breiman, L.: Random Forests. Mach. Learn. 45, 5–32 (2001)
Breiman, L.: Heuristics of instability and stabilization in model selection. Ann. Stat. 24, 2350–2383 (1996)
Hsu, C.-W., Lin, C.-J.: A comparison of methods for multi-class support vector machines. IEEE T. Neural Networ. 13, 415–425 (2002)
Allwein, E., Schapire, R., Singer, Y.: Reducing Multiclass to Binary: A unified Approach for Margin Classifiers. J. Mach. Learn. Res. 1, 113–141 (2000)
Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)
Huang, T.-M., Kecman, V.: Gene extraction for cancer diagnosis by support vector machines. Artif. Intell. Med. 35, 185–194 (2005)
Gasperi, F., Biasioli, F., Framondino, V., Endrizzi, I.: Ruolo dell´analisi sensoriale nella definizione delle caratteristiche dei prodotti tipici: l´esempio dei formaggi trentini / The role of sensory analysis in the characterization of traditional products: the case study of the cheese from Trentino. Sci. Tecn. Latt.-Cas. 55, 345–364 (2004)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Granitto, P.M., Biasioli, F., Furlanello, C., Gasperi, F. (2008). Efficient Feature Selection for PTR-MS Fingerprinting of Agroindustrial Products. In: Kůrková, V., Neruda, R., Koutník, J. (eds) Artificial Neural Networks - ICANN 2008. ICANN 2008. Lecture Notes in Computer Science, vol 5164. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87559-8_5
Download citation
DOI: https://doi.org/10.1007/978-3-540-87559-8_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-87558-1
Online ISBN: 978-3-540-87559-8
eBook Packages: Computer ScienceComputer Science (R0)