Nothing Special   »   [go: up one dir, main page]

Skip to main content

Deterministic Coincidence Detection and Adaptation Via Delayed Inputs

  • Conference paper
Artificial Neural Networks - ICANN 2008 (ICANN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5164))

Included in the following conference series:

Abstract

A model of one integrate-and-firing (IF) neuron with two afferent excitatory synapses is studied analytically. This is to discuss the influence of different model parameters, i.e., synaptic efficacies, synaptic and membrane time constants, on the postsynaptic neuron activity. An activation window of the postsynaptic neuron, which is adjustable through spike-timing dependent synaptic adaptation rule, is shown to be associated with the coincidence level of the excitatory postsynaptic potentials (EPSPs) under several restrictions. This simplified model, which is intrinsically the deterministic coincidence detector, is hence capable of detecting the synchrony level between intercellular connections. A model based on the proposed coincidence detection is provided as an example to show its application on early vision processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hebb, D.: The organization of behavior. Wiley, New York (1949)

    Google Scholar 

  2. Markram, H., Lubke, J., Frotscher, M., Sakmann, B.: Regulation of synaptic efficacy by coincidence of postsynaptic aps and epsps. Science 275, 213–215 (1997)

    Article  Google Scholar 

  3. Bi, G., Poo, M.: Activity-induced synaptic modifications in hippocampal culture, dependence on spike timing, synaptic strength and cell type. Journal of Neuroscience 18, 10464–10472 (1998)

    Google Scholar 

  4. Zhang, L., Tao, H., Holt, C., Harris, W., Poo, M.: A critical window for cooperation and competition among developing retinotectal synapses. Nature 395, 37–44 (1998)

    Article  Google Scholar 

  5. Abbott, L., Nelson, S.: Synaptic plasticity: taming the beast. Nature Neuroscience 3, 1178–1183 (2000)

    Article  Google Scholar 

  6. Zohary, E., Shadlen, M., Newsome, W.: Correlated neuronal discharge rate and its implications for psychophysical performance. Nature 370, 140–143 (1994)

    Article  Google Scholar 

  7. Sheth, B., Sharma, J., Rao, S., Sur, M.: Orientation maps of subjective contours in visual cortex. Science 274, 2110–2115 (1996)

    Article  Google Scholar 

  8. Bofill, A., Murray, A.: Circuits for vlsi implementation of temporally-asymmetric hebbian learning. Advances in Neural Information Processing Systems 14 (2001)

    Google Scholar 

  9. Indiveri, G.: Circuits for bistable spike-timing-dependent plasticity neuromorphic vlsi synapses. Advances in Neural Information Processing Systems 15 (2002)

    Google Scholar 

  10. Choe, Y., Miikkulainen, R.: The role of postsynaptic potential decay rate in neural synchrony. Neurocomputing 52-54, 707–712 (2003)

    Article  Google Scholar 

  11. Kailath, T.: Correlation detection of signals perturbed by a random channel. IEEE Transaction on Information Theory 6(3), 361–366 (1960)

    Article  MathSciNet  Google Scholar 

  12. Tuckwell, H.: Introduction to theoretical neurobiology, vol. 1. Cambridge University Press, Cambridge (1988)

    Google Scholar 

  13. Qian, N.: Binocular disparity and the perception of depth. Neuron 18, 359–368 (1997)

    Article  Google Scholar 

  14. Worgotter, F., Cozzi, A., Gerdes, V.: A parallel noise-robust algorithm to recover depth information from radial flow fields. Neural Computation 11, 381–416 (1999)

    Article  Google Scholar 

  15. Yang, Z., Murray, A., Worgotter, F., et al.: A neuromorphic depth-from-motion vision model with stdp adaptation. IEEE Transactions on Neural Networks 17(2), 482–495 (2006)

    Article  Google Scholar 

  16. Napp-Zinn, H., Jansen, M., Eckmiller, R.: Recognition and tracking of impulse patterns with delay adaptation in biology-inspired pulse processing neural net (bpn) hardware. Biological Cybernetics 74, 449–453 (1995)

    Article  Google Scholar 

  17. Eurich, C.W., et al.: Dynamics of self-organized delay adaptation. Physical Review Letters 82(7), 1594–1597 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Véra Kůrková Roman Neruda Jan Koutník

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, Z., Murray, A., Huo, J. (2008). Deterministic Coincidence Detection and Adaptation Via Delayed Inputs. In: Kůrková, V., Neruda, R., Koutník, J. (eds) Artificial Neural Networks - ICANN 2008. ICANN 2008. Lecture Notes in Computer Science, vol 5164. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87559-8_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87559-8_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87558-1

  • Online ISBN: 978-3-540-87559-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics