Nothing Special   »   [go: up one dir, main page]

Skip to main content

Comparison of RBF Network Learning and Reinforcement Learning on the Maze Exploration Problem

  • Conference paper
Artificial Neural Networks - ICANN 2008 (ICANN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5163))

Included in the following conference series:

Abstract

An emergence of intelligent behavior within a simple robotic agent is studied in this paper. Two control mechanisms for an agent are considered — a radial basis function neural network trained by evolutionary algorithm, and a traditional reinforcement learning algorithm over a finite agent state space. A comparison of these two approaches is presented on the maze exploration problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Broomhead, D.S., Lowe, D.: Multivariable functional interpolation and adaptive networks. Complex Systems 2, 321–355 (1988)

    MATH  MathSciNet  Google Scholar 

  2. E-puck, online documentation, http://www.e-puck.org

  3. Fogel, D.B.: Evolutionary Computation: The Fossil Record. MIT/ IEEE Press (1998)

    Google Scholar 

  4. Haykin, S.: Neural Networks: a comprehensive foundation, 2nd edn. Prentice-Hall, Englewood Cliffs (1999)

    MATH  Google Scholar 

  5. Holland, J.: Adaptation In Natural and Artificial Systems. MIT Press, Cambridge (1992)

    Google Scholar 

  6. Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)

    MATH  Google Scholar 

  7. Moody, J., Darken, C.: Fast learning in networks of locally-tuned processing units. Neural Computation 1, 289–303 (1989)

    Article  Google Scholar 

  8. Nolfi, S., Floreano, D.: Evolutionary Robotics — The Biology, Intelligence and Techology of Self-Organizing Machines. MIT Press, Cambridge (2000)

    Google Scholar 

  9. Pfeifer, R., Scheier, C.: Understanding Intelligence. MIT Press, Cambridge (2000)

    Google Scholar 

  10. Poggio, T., Girosi, F.: A theory of networks for approximation and learning. Technical report, Massachusetts Institute of Technology, Cambridge, MA, USA, A. I. Memo No. 1140, C.B.I.P. Paper No. 31 (1989)

    Google Scholar 

  11. Slušný, S., Neruda, R.: Evolving homing behaviour for team of robots. In: Computational Intelligence, Robotics and Autonomous Systems. Massey University, Palmerston North (2007)

    Google Scholar 

  12. Slušný, S., Neruda, R., Vidnerová, P.: Evolution of simple behavior patterns for autonomous robotic agent. In: System Science and Simulation in Engineering, pp. 411–417. WSEAS Press (2007)

    Google Scholar 

  13. Richard Sutton, S., Andrew Barto, G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  14. Watkins, C.J.C.H.: Learning from delayed rewards. Ph.D. thesis (1989)

    Google Scholar 

  15. Webots simulator. On-line documentation, http://www.cyberbotics.com/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Véra Kůrková Roman Neruda Jan Koutník

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Slušný, S., Neruda, R., Vidnerová, P. (2008). Comparison of RBF Network Learning and Reinforcement Learning on the Maze Exploration Problem. In: Kůrková, V., Neruda, R., Koutník, J. (eds) Artificial Neural Networks - ICANN 2008. ICANN 2008. Lecture Notes in Computer Science, vol 5163. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87536-9_74

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87536-9_74

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87535-2

  • Online ISBN: 978-3-540-87536-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics