Nothing Special   »   [go: up one dir, main page]

Skip to main content

Analysis of Chaotic Dynamics Using Measures of the Complex Network Theory

  • Conference paper
Artificial Neural Networks - ICANN 2008 (ICANN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5163))

Included in the following conference series:

Abstract

Complex phenomena are observed in various situations. These complex phenomena are produced from deterministic dynamical systems or stochastic systems. Then, it is an important issue to clarify what is a source of the complex phenomena and to analyze what kind of response will emerge. Then, in this paper, we analyze deterministic chaos from a new aspect. The analysis method is based on the idea that attractors of nonlinear dynamical systems and networks are characterized by a two-dimensional matrix: a recurrence plot and an adjacent matrix. Then, we transformed the attractors to the networks, and evaluated the clustering coefficients and the characteristic path length to the networks. As a result, the networks constructed from the chaotic systems show a small world property.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. e.q. Ruelle, D.: Chaotic evolution and strange attractors. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  2. Thiel, M., Romano, M.C., Kurths, J., Rolfs, M., Kliegl, R.: Twin surrogates to test for complex synchronisation. Europhysics Letters 74, 535–541 (2006)

    Article  Google Scholar 

  3. Thiel, M., Romano, M.C.: Estimation of dynamical invariants without embedding by recurrence plots. Chaos: An Interdisciplinary Journal of Nonlinear Science 14(2), 234–243 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  5. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  6. Costa, L.D.F., Rodrigues, F.A., Travieso, G., Villas Boas, P.R.: Characterization of complex networks: A survey of measurements. Advances in Physics 56, 167–242 (2007)

    Article  Google Scholar 

  7. Zhang, J., Small, M.: Complex network from pseudoperiodic time series: Topology versus dynamics. Physical Review Letters 96(238701) (2006)

    Google Scholar 

  8. Packard, N.H., Crutchfield, J.P., Farmar, J.D., Shaw, R.S.: Geometry from a time series. Physical Review Letters 45(9), 712–716 (1980)

    Article  Google Scholar 

  9. Rossler, O.E.: An equation for continuous chaos. Physics Letters A 57(5), 397–398 (1976)

    Article  Google Scholar 

  10. Lorenz, E.N.: Deterministic nonperiodic flow. Journal of The Atmospheric Sciences 20, 131–141 (1963)

    Article  Google Scholar 

  11. Weigend, A.S., Gershenfeld, N.A.: Time series prediction: Forecasting the future and understanding the past. Santa Fe Institute (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Véra Kůrková Roman Neruda Jan Koutník

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shimada, Y., Kimura, T., Ikeguchi, T. (2008). Analysis of Chaotic Dynamics Using Measures of the Complex Network Theory. In: Kůrková, V., Neruda, R., Koutník, J. (eds) Artificial Neural Networks - ICANN 2008. ICANN 2008. Lecture Notes in Computer Science, vol 5163. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87536-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87536-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87535-2

  • Online ISBN: 978-3-540-87536-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics