Nothing Special   »   [go: up one dir, main page]

Skip to main content

Implementation Issues of an Incremental and Decremental SVM

  • Conference paper
Artificial Neural Networks - ICANN 2008 (ICANN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5163))

Included in the following conference series:

Abstract

Incremental and decremental processes of training a support vector machine (SVM) resumes to the migration of vectors in and out of the support set along with modifying the associated thresholds. This paper gives an overview of all the boundary conditions implied by vector migration through the incremental / decremental process. The analysis will show that the same procedures, with very slight variations, can be used for both the incremental and decremental learning. The case of vectors with duplicate contribution is also considered. Migration of vectors among sets on decreasing the regularization parameter is given particularly attention. Experimental data show the possibility of modifying this parameter on a large scale, varying it from complete training (overfitting) to a calibrated value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bottou, L., Le Cun, Y.: Large Scale Online Learning. In: Thrun, S., Saul, L., Schölkopf, B. (eds.) Advances in Neural Information Processing Systems, vol. 16. MIT Press, Cambridge (2004)

    Google Scholar 

  2. Chang, C.C., Lin, C.J.: LIBSVM: a Library for Support Vector Machines (2001), http://www.csie.ntu.edu.tw/~cjlin/libsvm

  3. Burges, C.J., Crisp, D.J.: Uniqueness of the SVM Solution. In: Solla, S.A., Leen, T.K., Muller, K.R. (eds.) Advances in Neural Information Processing Systems, vol. 12. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  4. Blake, C.L., Merz, C.J.: UCI repository of machine learning databases, University of California, Irvine, Dept. of Information and Computer Sciences (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html

  5. Diehl, C.P., Cauwenberghs, G.: SVM Incremental Learning, Adaptation and Optimization. In: Proceedings of the IJCNN, vol. 4 (2003)

    Google Scholar 

  6. Alpaydin, E.: Introduction to Machine Learning. MIT Press, Cambridge (2004)

    Google Scholar 

  7. d’Alche-Buc, F., Ralaivola, L.: Incremental Learning Algorithms for Classification and Regression: local strategies. In: American Institute of Physics Conference Proc., vol. 627, pp. 320–329 (2002)

    Google Scholar 

  8. Cauwenberghs, G., Poggio, T.: Incremental and Decremental Support Vector Machine Learning. In: Neural Information Processing Systems, Denver (2000)

    Google Scholar 

  9. Fung, G., Mangasarian, O.: Incremental Support Vector Machine Classification. In: Advances in Neural Information Processing Systems. MIT Press, Cambridge (2003)

    Google Scholar 

  10. Hull, J.J.: A Database for Handwritten Text Recognition Research. IEEE Transactions on Pattern Analysis and Machine Intelligence 16(5), 550–554 (1994)

    Article  Google Scholar 

  11. Taylor, J.S., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  12. Ma, J., Thelier, J., Perkins, S.: Accurate On-line Support Vector Regression. Neural Computation (2003)

    Google Scholar 

  13. Martin, M.: On-line Support Vector Machine Regression. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) ECML 2002. LNCS (LNAI), vol. 2430. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Syed, N.A., Liu, H., Sung, K.K.: Incremental Learning with Support Vector Machines. In: Proc. of the Workshop on Support Vector Machines at the International Joint Conference on Artificial Intelligence, IJCAI 1999, Stockholm, Sweden (1999)

    Google Scholar 

  15. Laskov, P., Gehl, C., Krüger, S., Müller, K.R.: Incremental Support Vector Learning: Analysis, Implementation and Applications. Journal of Machine Learning Research 7, 1909–1936 (2006)

    Google Scholar 

  16. Reuters 21578 Text Categorization Collection, Dataset, http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html

  17. Rüping, S.: Incremental Learning with Support Vector Machines. In: Proceedings of the 2001 IEEE International Conference on Data Mining, ICDM 2001 (2001)

    Google Scholar 

  18. Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 2nd edn. Elsevier Academic Press, Amsterdam (2003)

    Google Scholar 

  19. Joachims, T.: Learning to Classify Text using Support Vector Machines: Methods, Theory and Algorithms. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  20. Wang, W., Men, C., Lu, W.: Online Prediction Model Based on Support Vector Machine. Neurocomputing 71, 550–558 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Véra Kůrková Roman Neruda Jan Koutník

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gâlmeanu, H., Andonie, R. (2008). Implementation Issues of an Incremental and Decremental SVM. In: Kůrková, V., Neruda, R., Koutník, J. (eds) Artificial Neural Networks - ICANN 2008. ICANN 2008. Lecture Notes in Computer Science, vol 5163. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87536-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87536-9_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87535-2

  • Online ISBN: 978-3-540-87536-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics