Nothing Special   »   [go: up one dir, main page]

Skip to main content

Social Odometry in Populations of Autonomous Robots

  • Conference paper
Ant Colony Optimization and Swarm Intelligence (ANTS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5217))

Abstract

The improvement of odometry systems in collective robotics remains an important challenge for several applications. In this work, we propose a localisation strategy in which robots have no access to centralised information. Each robot has an estimate of its own location and an associated confidence level that decreases with distance travelled. Robots use estimates advertised by neighbouring robots to correct their own location estimates at each time-step. This simple online social form of odometry is shown to allow a group of robots to both increase the quality of individuals’ estimates and efficiently improve their collective performance. Furthermore, social odometry produces a successful self-organised collective pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wang, C.M.: Location estimation and uncertainty analysis for mobile robots. Autonomous Robot Vehicles 1(1), 90–95 (1990)

    Google Scholar 

  2. Larsen, T., Bak, M., Andersen, N., Ravn, O.: Location estimation for autonomously guided vehicle using an augmented Kalman filter to autocalibrate the odometry. In: FUSION 1998 Spie Conference, pp. 33–39. CSREA Press, Las Vegas (1998)

    Google Scholar 

  3. Thrun, S., Burgard, W., Fox, D.: A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 321–328. Robotics and Automation Society, NJ (2000)

    Google Scholar 

  4. Kurazume, R., Hirose, S.: An experimental study of a cooperative positioning system. Autonomous Robots 8(1), 43–52 (2000)

    Article  Google Scholar 

  5. Grabowski, R., Navarro-Serment, L., Paredis, C., Khosla, P.: Heterogeneous teams of modular robots for mapping and exploration. Autonomous Robots 8(2), 293–308 (2000)

    Article  Google Scholar 

  6. Nouyan, S., Campo, A., Dorigo, M.: Path formation in a robot swarm: Self-organized strategies to find your way home. Swarm Intelligence 2(1), 1–23 (2008)

    Article  Google Scholar 

  7. Vaughan, R., Stoy, K., Sukhatme, G., Matarić, M.: LOST: Localization-space trails for robot teams. IEEE Transactions on Robotics and Automation 18(5), 796–812 (2002)

    Article  Google Scholar 

  8. Balch, T.: Reward and diversity in multirobot foraging. In: IJCAI-1999 Workshop on Agents Learning About, From and With other Agents, pp. 15–21. Morgann Kaufman, San Francisco (1997)

    Google Scholar 

  9. Klarer, P.: Simple 2-d navigation for wheeled vehicles. Technical report, Sandia Report SAND88-0540, Sandia National Laboratories, Livermore, CA (1988)

    Google Scholar 

  10. Feng, L., Borenstein, J., Everett, H.: Where am I? Sensors and Methods for Autonomous Mobile Robot Positioning. University of Michigan Press, Ann Arbor (1994)

    Google Scholar 

  11. Borenstein, J., Feng, L.: Measurement and correction of systematic odometry errors in mobile robots. IEEE Transactions on Robotics and Automation 12, 869–880 (1999)

    Article  Google Scholar 

  12. Chong, K., Kleeman, L.: Accurate odometry and error modelling for a mobile robot. In: IEEE International Conference on Robotics and Automation, pp. 2783–2788. Robotics and Automation Society, NJ (1997)

    Google Scholar 

  13. Santos, F.C., Pacheco, J.M., Lenaerts, T.: Cooperation prevails when individuals adjust their social ties. PLoS Computational Biology 2(10), e140 (2006)

    Article  Google Scholar 

  14. Goldberg, D., Matarić, M.J.: Interference as a tool for designing and evaluating multi-robot controllers. In: Proceedings of the Fourteenth National Conference on Artificial Intelligence, pp. 637–642. AAAI Press, Menlo Park (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Marco Dorigo Mauro Birattari Christian Blum Maurice Clerc Thomas Stützle Alan F. T. Winfield

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gutiérrez, Á., Campo, A., Santos, F.C., Pinciroli, C., Dorigo, M. (2008). Social Odometry in Populations of Autonomous Robots. In: Dorigo, M., Birattari, M., Blum, C., Clerc, M., Stützle, T., Winfield, A.F.T. (eds) Ant Colony Optimization and Swarm Intelligence. ANTS 2008. Lecture Notes in Computer Science, vol 5217. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87527-7_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87527-7_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87526-0

  • Online ISBN: 978-3-540-87527-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics