Nothing Special   »   [go: up one dir, main page]

Skip to main content

Modeling the Mobile Oil Recovery Problem as a Multiobjective Vehicle Routing Problem

  • Conference paper
Modelling, Computation and Optimization in Information Systems and Management Sciences (MCO 2008)

Abstract

The Mobile Oil Recovery (MOR) unit is a truck able to pump marginal wells in a petrol field. The goal of the MOR optimization Problem (MORP) is to optimize both the oil extraction and the travel costs. We describe several formulations for the MORP using a single vehicle or a fleet of vehicles. We have also strengthened them by improving the subtour elimination constraints. Optimality is proved for instances close to reality with up to 200 nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aloise, D., Aloise, D.J., Ochi, L.S., Maia, R.S., Bittencourt, V.G.: Uma colônia de formigas para o problema de explotação de petróleo e otimização de rotas de unidades móveis de pistoneio. In: Congresso Brasileiro de Automática, Natal., pp. 1232–1237 (2002)

    Google Scholar 

  2. Balas, E.: The prize collecting traveling salesman problem. Networks 19, 621–636 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boffey, B.: Multiobjective routing problems. TOP 3, 167–220 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Corte-Real, M., Gouveia, L.: Network flow models for the local access network expansion problem. Computers and Operations Research 34, 1141–1157 (2007)

    Article  MATH  Google Scholar 

  5. Desrochers, M., Laporte, G.: Improvements and extensions to the Miller-Tucker-Zemlin subtour elimination constraints. Operations Research Letters 10, 27–36 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gavish, B., Graves, S.C.: The travelling salesman problem and related problems. Technical Report OR 078-78, Massachusetts Institute of Technology (2005)

    Google Scholar 

  7. Keller, C.K., Goodchild, M.F.: The multiobjective vending problem: a generalization of the travelling salesman problem. Environment and Planning B: Planning and Design 15, 447–460 (1988)

    Article  Google Scholar 

  8. Laporte, G., Martelo, S.: The selective travelling salesman problem. Discrete Applied Mathematics 26, 193–207 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Laporte, G., Osman, I.H.: Routing problems: A bibliography. Annals of Operations Research 61, 227–262 (1995)

    Article  MATH  Google Scholar 

  10. Magnanti, T.L., Wolsey, L.: Optimal trees in network models. In: Handbooks in operations research and management science, vol. 7, pp. 503–615. Elsevier, North-Holland (1995)

    Google Scholar 

  11. Miller, C.E., Tucker, A.W., Zemlin, R.A.: Integer programming formulations and traveling salesman problems. Journal of the ACM 7, 326–329 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ropke, S., Cordeau, J.F., Laporte, G.: Models and branch-and-cut algorithms for pickup and delivery problems with time windows. Networks 49, 258–272 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Santos, A.C., Barros, C.A., Aloise, D.J., Neves, J.A., Noronha, T.F.: Um algoritmo GRASP reativo aplicado ao problema do emprego da unidade móvel de pistoneio. In: XXXIII Simpósio Brasileiro de Pesquisa Operacional, Campos do Jordão, pp. 247–258 (2001)

    Google Scholar 

  14. Toth, P., Vigo, D.: The vehicle routing problem. Society for Industrial & Applied Mathematics. SIAM, Philadelphia (2002)

    Book  Google Scholar 

  15. Wong, R.T.: Integer programming formulations and traveling salesman problems. In: Proceedings IEEE Conference on Circuits and Computers, pp. 149–152. IEEE Press, Los Alamitos (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Santos, A.C., Duhamel, C., Aloise, D.J. (2008). Modeling the Mobile Oil Recovery Problem as a Multiobjective Vehicle Routing Problem. In: Le Thi, H.A., Bouvry, P., Pham Dinh, T. (eds) Modelling, Computation and Optimization in Information Systems and Management Sciences. MCO 2008. Communications in Computer and Information Science, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87477-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87477-5_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87476-8

  • Online ISBN: 978-3-540-87477-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics