Abstract
In this paper we propose an efficient algorithm based on branch and bound method and reduced interval techniques to approximate real roots of a polynomial. Quadratic bounding functions are proposed which are better than the well known linear underestimator. Experimental result shows its efficiency when facing ill-conditionned polynomials.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Pan, V.Y.: Solving a polynomial equation: some history and recent progress. SIAM Rev. 39, 187–220 (1997)
Jenkis, M.A., Traub, J.F.: A three-stage algorithm for real polynomials using quadratic iteration. SIAM Journal on Numerical Analysis 7, 545–566 (1970)
Mourrain, B., Vrahatis, M.N., Yakoubsohn, J.C.: On the complexity of isolating real roots and computing with certainty the topological degree. Journal of Complexity 18, 612–640 (2002)
Zeng, Z.: Computing multiple roots of inexact polynomials (manuscript), http://www.neiu.edu/~zzeng/Papers/
Farouki, R.T., Rajan, V.T.: Algorithms for polynomials in Bernstein form. Computer Aided Geometric Design 5, 1–26 (1988)
De Boor, C.: A practical Guide to Splines Applied Mathematical Sciences. Springer, Heidelberg (1978)
Le Thi, H.A., Ouanes, M.: Convex quadratic underestimation and Branch and Bound for univariate global optimization with one nonconvex constraint. Rairo-Operations Research 40, 285–302 (2006)
Calvin, J., Ilinskas, A.: On the convergence of the P-algorithm for one-dimensional global optimization of smooth functions. Journal of Optimization Theory and Applications 102, 479–495 (1999)
Hansen, P., Jaumard, B., Xiong, J.: Decomposition and interval arithmetic applied to minimization of polynomial and rational functions. Journal of Global Optimization 3, 421–437 (1993)
Hansen, P., Jaumard, B., Lu, S.H.: Global Optimization of Univariate Functions by Sequential Polynomial Approximation. International Journal of Computer Mathematics 28, 183–193 (1989)
Hansen, P., B., Jaumard, B., Lu, S.H.: Global Optimization of Univariate Lipschitz Functions: 2. New Algorithms and Computational Comparison. Mathematical Programming. 55, 273–292 (1992)
Moore, R.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)
Thai, Q.P., Le Thi, H.A., Pham, D.T.: On the global solution of linearly constrained indefinite quadratic minimization problems by decomposition branch and bound method. RAIRO, Recherche Opérationnelle 30, 31–49 (1996)
Ratschek, H., Rokne, J.: New Computer Methods for Global Optimization. Wiley, New York (1982)
Ratz, D.: A nonsmooth global optimization technique using slopes the one-dimensional case. Journal of Global Optimization 14, 365–393 (1999)
Visweswaran, V., Floudas, C.A.: Global Optimization of Problems with Polynomial Functions in One Variable. In: Floudas, A., Pardalos, P.M. (eds.) Recent Advances in Global Optimization, pp. 165–199. Princeton University Press, Princeton (1992)
Sergeyev, Y.D.: Global one-dimensional optimization using smooth auxiliary functions. Mathematical Programming 81, 127–146 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Le Thi, H.A., Ouanes, M., Zidna, A. (2008). An Adapted Branch and Bound Algorithm for Approximating Real Root of a Ploynomial. In: Le Thi, H.A., Bouvry, P., Pham Dinh, T. (eds) Modelling, Computation and Optimization in Information Systems and Management Sciences. MCO 2008. Communications in Computer and Information Science, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87477-5_20
Download citation
DOI: https://doi.org/10.1007/978-3-540-87477-5_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-87476-8
Online ISBN: 978-3-540-87477-5
eBook Packages: Computer ScienceComputer Science (R0)