Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Adapted Branch and Bound Algorithm for Approximating Real Root of a Ploynomial

  • Conference paper
Modelling, Computation and Optimization in Information Systems and Management Sciences (MCO 2008)

Abstract

In this paper we propose an efficient algorithm based on branch and bound method and reduced interval techniques to approximate real roots of a polynomial. Quadratic bounding functions are proposed which are better than the well known linear underestimator. Experimental result shows its efficiency when facing ill-conditionned polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pan, V.Y.: Solving a polynomial equation: some history and recent progress. SIAM Rev. 39, 187–220 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Jenkis, M.A., Traub, J.F.: A three-stage algorithm for real polynomials using quadratic iteration. SIAM Journal on Numerical Analysis 7, 545–566 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  3. Mourrain, B., Vrahatis, M.N., Yakoubsohn, J.C.: On the complexity of isolating real roots and computing with certainty the topological degree. Journal of Complexity 18, 612–640 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Zeng, Z.: Computing multiple roots of inexact polynomials (manuscript), http://www.neiu.edu/~zzeng/Papers/

  5. Farouki, R.T., Rajan, V.T.: Algorithms for polynomials in Bernstein form. Computer Aided Geometric Design 5, 1–26 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. De Boor, C.: A practical Guide to Splines Applied Mathematical Sciences. Springer, Heidelberg (1978)

    Book  MATH  Google Scholar 

  7. Le Thi, H.A., Ouanes, M.: Convex quadratic underestimation and Branch and Bound for univariate global optimization with one nonconvex constraint. Rairo-Operations Research 40, 285–302 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Calvin, J., Ilinskas, A.: On the convergence of the P-algorithm for one-dimensional global optimization of smooth functions. Journal of Optimization Theory and Applications 102, 479–495 (1999)

    Article  MathSciNet  Google Scholar 

  9. Hansen, P., Jaumard, B., Xiong, J.: Decomposition and interval arithmetic applied to minimization of polynomial and rational functions. Journal of Global Optimization 3, 421–437 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hansen, P., Jaumard, B., Lu, S.H.: Global Optimization of Univariate Functions by Sequential Polynomial Approximation. International Journal of Computer Mathematics 28, 183–193 (1989)

    Article  MATH  Google Scholar 

  11. Hansen, P., B., Jaumard, B., Lu, S.H.: Global Optimization of Univariate Lipschitz Functions: 2. New Algorithms and Computational Comparison. Mathematical Programming. 55, 273–292 (1992)

    MathSciNet  MATH  Google Scholar 

  12. Moore, R.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)

    MATH  Google Scholar 

  13. Thai, Q.P., Le Thi, H.A., Pham, D.T.: On the global solution of linearly constrained indefinite quadratic minimization problems by decomposition branch and bound method. RAIRO, Recherche Opérationnelle 30, 31–49 (1996)

    MATH  Google Scholar 

  14. Ratschek, H., Rokne, J.: New Computer Methods for Global Optimization. Wiley, New York (1982)

    MATH  Google Scholar 

  15. Ratz, D.: A nonsmooth global optimization technique using slopes the one-dimensional case. Journal of Global Optimization 14, 365–393 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Visweswaran, V., Floudas, C.A.: Global Optimization of Problems with Polynomial Functions in One Variable. In: Floudas, A., Pardalos, P.M. (eds.) Recent Advances in Global Optimization, pp. 165–199. Princeton University Press, Princeton (1992)

    Google Scholar 

  17. Sergeyev, Y.D.: Global one-dimensional optimization using smooth auxiliary functions. Mathematical Programming 81, 127–146 (1998)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Le Thi, H.A., Ouanes, M., Zidna, A. (2008). An Adapted Branch and Bound Algorithm for Approximating Real Root of a Ploynomial. In: Le Thi, H.A., Bouvry, P., Pham Dinh, T. (eds) Modelling, Computation and Optimization in Information Systems and Management Sciences. MCO 2008. Communications in Computer and Information Science, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87477-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87477-5_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87476-8

  • Online ISBN: 978-3-540-87477-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics