Abstract
The problem of scarcity of ground-truth expert delineations of medical image data is a serious one that impedes the training and validation of medical image analysis techniques. We develop an algorithm for the automatic generation of large databases of annotated images from a single reference dataset. We provide a web-based interface through which the users can upload a reference data set (an image and its corresponding segmentation and landmark points), provide custom setting of parameters, and, following server-side computations, generate and download an arbitrary number of novel ground-truth data, including segmentations, displacement vector fields, intensity non-uniformity maps, and point correspondences. To produce realistic simulated data, we use variational (statistically-based) and vibrational (physically-based) spatial deformations, nonlinear radiometric warps mimicking imaging non-homogeneity, and additive random noise with different underlying distributions. We outline the algorithmic details, present sample results, and provide the web address to readers for immediate evaluation and usage.
Chapter PDF
Similar content being viewed by others
References
Alexander, D., Pierpaoli, C., Basser, P., Gee, J.: Spatial transformations of diffusion tensor magnetic resonance images. IEEE TMI 20(11), 1131–1139 (2001)
Chou, Y., Skrinjar, O.: Ground truth data for validation of nonrigid image registration Algorithms. In: ISBI, pp. 716–719 (2004)
Christensen, et al.: Introduction to the Non-Rigid Image Registration Evaluation Project (NIREP). In: Biomedical Image Registration Workshop, pp. 128–135 (2006)
Cocosco, C., Kollokian, V., Kwan, R., Evans, A.: BrainWeb: Online Interface to a 3D MRI Simulated Brain Database. NeuroImage 5(4), part 2/4, S425 (1997)
Cootes, T., Edwards, Taylor, C.: Active Appearance Models. PAMI 23(6), 681–685 (2001)
Cootes, T., Taylor, C., Cooper, D., Grahamet, J.: Active Shape Models - Their Training and Application. Computer Vision and Image Understanding 61(1), 38–59 (1995)
Cootes, T., Taylor, C.: Combining point distribution models with shape models based on finite element analysis. Image and Vision Computing 13(5), 403–409 (1995)
Davies, R., Twining, C., Cootes, T., Waterton, J., Taylor, C.: A minimum description length approach to statistical shape Modeling. IEEE TMI 21(5), 525–537 (2002)
Dice, L.: Measures of the Amount of Ecologic Association Between Species. Ecology 26(3), 297–302 (1945)
Everingham, M., Muller, H., Thomas, B.: Evaluating image segmentation algorithms using monotonic hulls in fitness/cost space. BMVC, 363–372 (2001)
Everingham, M., Muller, H., Thomas, B.: Evaluating image segmentation algorithms using the Pareto front. ECCV (IV), 34–48 (2002)
Fitzpatrick, et al.: Visual assessment of the accuracy of retrospective registration of MR and CT images of the brain. IEEE TMI 17, 571–585 (1998)
Gerig, G., Jomier, M., Chakos, M.: VALMET: A new validation tool for assessing and improving 3D object segmentation. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 516–523. Springer, Heidelberg (2001)
Hellier, et al.: Retrospective Evaluation of Inter-subject Brain Registration. IEEE TMI 22(9), 1120–1130 (2003)
Internet Brain Segmentation Repository, http://www.cma.mgh.harvard.edu/ibsr/
Jaccard, P.: Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bulletin de la Société Vaudoise des Sciences Naturelles 37, 547–579 (1901)
Karlsson, J., Ericsson, A.: A ground truth correspondence measure for benchmarking. In: ICPR, pp. 568–573 (2006)
Kwan, R., Evans, A., Pike, B.: MRI Simulation-Based Evaluation of Image-Processing and Classification Methods. IEEE TMI 18(11), 1085–1097 (1999)
Lehman, T., Gonner, C., Spitzer, K.: Survey: Interpolation Methods in Medical Image Processing. IEEE TMI 18(11), 1049–1075 (1999)
Maintz, J., Viergever, M.: A survey of medical image registration. MIA 2(1), 1–36 (1998)
Maurer, C., Fitzpatrick, J., Wang, M., Galloway, R., Maciunas, R., Allen, G.: Registration of head volume images using implantable fiducial markers. IEEE TMI 16(4), 447–462 (1997)
Pawluczyk, O., Yaffe, M.: Field nonuniformity correction for quantitative analysis of digitized mammograms. Medical Physics 28(4), 438–444 (2001)
Pennec, X., Thirion, J.: A Framework for Uncertainty and Validation of 3-D Registration Methods based on Points and Frames. IJCV 25(3), 203–229 (1997)
Reilhac, et al.: PET-SORTEO: validation and development of database of Simulated PET volumes. IEEE Transactions on Nuclear Science 52(5), part 1, 1321–1328 (2005)
Rosenberger, C.: Adaptive evaluation of image segmentation results. In: ICPR, pp. 399–402 (2006)
Schestowitz, R., Twining, C., Petrovic, V., Cootes, T., Crum, B., Taylor, C.: Non-Rigid Registration Assessment Without Ground Truth. In: MIUA, vol. 2, pp. 151–155 (2006)
Sled, J., Pike, B.: Understanding Intensity Non-uniformity in MRI. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 614–622. Springer, Heidelberg (1998)
Styner, M., Rajamani, K., Nolte, L., Zsemlye, G., Székely, G., Taylor, C., Davies, R.: Evaluation of 3D Correspondence Methods for Model Building. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 63–75. Springer, Heidelberg (2003)
Twining, C., Cootes, T., Marsland, S., Petrovic, V., Schestowitz, R., Taylor, C.: Information-Theoretic Unification of Groupwise Non-Rigid Registration and Model Building. In: MIUA, pp. 226–230 (2006)
Unnikrishnan, R., Pantofaru, C., Hebert, M.: A Measure for Objective Evaluation of Image Segmentation Algorithms. In: CVPR Workshop on Empirical Methods in Computer Vision, p. 34 (2005)
Warfield, S., Zho, K., Wells, W.: Simultaneous Truth and Performance Level Estimation (STAPLE): An Algorithm for the Validation of Image Segmentation. IEEE TMI 23(7), 903–921 (2004)
West, et al.: Comparison and evaluation of retrospective inter-modality brain image registration techniques. J. Computer Assisted Tomography 21(4), 554–566 (1997)
Zhang, Y.: A review of recent evaluation methods for image segmentation. In: ISSPA, pp. 148–151 (2001)
Zhang, H., Fritts, J., Goldman, S.: An entropy-based objective evaluation methods for image segmentation. In: SPIE, vol. 5307, pp. 38–49 (2003)
Zhang, H., Cholleti, S., Goldman, S.: Meta-Evaluation of Image Segmentation Using Machine Learning. In: CVPR, pp. 1138–1145 (2006)
Zhang, Y.: A survey on Evaluation Methods for Image Segmentation. Pattern Recognition 29(8), 1335–1346 (1996)
Author information
Authors and Affiliations
Editor information
Electronic Supplementary Material
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hamarneh, G., Jassi, P., Tang, L. (2008). Simulation of Ground-Truth Validation Data Via Physically- and Statistically-Based Warps. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2008. MICCAI 2008. Lecture Notes in Computer Science, vol 5241. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85988-8_55
Download citation
DOI: https://doi.org/10.1007/978-3-540-85988-8_55
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85987-1
Online ISBN: 978-3-540-85988-8
eBook Packages: Computer ScienceComputer Science (R0)