Abstract
The central problem in training a radial basis function neural network (RBFNN) is the selection of hidden layer neurons, which includes the selection of the center and width of those neurons. In this paper, we propose an enhanced swarm intelligence clustering (ESIC) method to select hidden layer neurons, and then, training a cosine RBFNN base on gradient descent learning process. Also, the new method is applied for intrusion detection. Experimental results show that the average DR and FPR of our ESIC-based RBFNN detection classifier maintained a better performance than BP, SVM and OLS RBF.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Mao, K.Z., Huang, G.B.: Neuron Selection for RBF Neural Network Classifier Based on Data Structure Preserving Criterion. In: IEEE Trans. Neural Networks, pp. 1531–1540. IEEE Computational Intelligence Society, New York (2005)
Gonzalez, J., Rojas, I., Ortega, J.: Multiobjective Evolutionary Optimization of the Size, Shape, and Position Parameters of Radial Basis Function Networks for Function Approximation. In: IEEE Trans. Neural Networks, pp. 1478–1495. IEEE Computational Intelligence Society, New York (2003)
Han, Y.F., Shi, P.F.: An Improved Ant Colony Algorithm for Fuzzy Clustering in Image Segmentation. Neurocomputing 70, 665–671 (2007)
Runkler, T.A.: Ant Colony Optimization of Clustering Models. International Journal of Intelligent Systems 20, 1233–1251 (2005)
Feng, Y., Zhong, J., Xiong, Z.Y., Ye, C.X., Wu, K.G.: Network Anomaly Detection Based on DSOM and ACO Clustering. In: Liu, D., Fei, S., Hou, Z., Zhang, H., Sun, C. (eds.) ISNN 2007. LNCS, vol. 4492, pp. 947–955. Springer, Heidelberg (2007)
MIT Lincoln Laboratory (1998), http://www.ll.mit.edu/IST/
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Feng, Y., Wu, Zf., Zhong, J., Ye, Cx., Wu, Kg. (2008). An Enhanced Swarm Intelligence Clustering-Based RBF Neural Network Detection Classifier. In: Huang, DS., Wunsch, D.C., Levine, D.S., Jo, KH. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence. ICIC 2008. Lecture Notes in Computer Science(), vol 5227. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85984-0_63
Download citation
DOI: https://doi.org/10.1007/978-3-540-85984-0_63
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85983-3
Online ISBN: 978-3-540-85984-0
eBook Packages: Computer ScienceComputer Science (R0)