Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5227))

Included in the following conference series:

Abstract

The central problem in training a radial basis function neural network (RBFNN) is the selection of hidden layer neurons, which includes the selection of the center and width of those neurons. In this paper, we propose an enhanced swarm intelligence clustering (ESIC) method to select hidden layer neurons, and then, training a cosine RBFNN base on gradient descent learning process. Also, the new method is applied for intrusion detection. Experimental results show that the average DR and FPR of our ESIC-based RBFNN detection classifier maintained a better performance than BP, SVM and OLS RBF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mao, K.Z., Huang, G.B.: Neuron Selection for RBF Neural Network Classifier Based on Data Structure Preserving Criterion. In: IEEE Trans. Neural Networks, pp. 1531–1540. IEEE Computational Intelligence Society, New York (2005)

    Google Scholar 

  2. Gonzalez, J., Rojas, I., Ortega, J.: Multiobjective Evolutionary Optimization of the Size, Shape, and Position Parameters of Radial Basis Function Networks for Function Approximation. In: IEEE Trans. Neural Networks, pp. 1478–1495. IEEE Computational Intelligence Society, New York (2003)

    Google Scholar 

  3. Han, Y.F., Shi, P.F.: An Improved Ant Colony Algorithm for Fuzzy Clustering in Image Segmentation. Neurocomputing 70, 665–671 (2007)

    Google Scholar 

  4. Runkler, T.A.: Ant Colony Optimization of Clustering Models. International Journal of Intelligent Systems 20, 1233–1251 (2005)

    Article  MATH  Google Scholar 

  5. Feng, Y., Zhong, J., Xiong, Z.Y., Ye, C.X., Wu, K.G.: Network Anomaly Detection Based on DSOM and ACO Clustering. In: Liu, D., Fei, S., Hou, Z., Zhang, H., Sun, C. (eds.) ISNN 2007. LNCS, vol. 4492, pp. 947–955. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. MIT Lincoln Laboratory (1998), http://www.ll.mit.edu/IST/

Download references

Author information

Authors and Affiliations

Authors

Editor information

De-Shuang Huang Donald C. Wunsch II Daniel S. Levine Kang-Hyun Jo

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Feng, Y., Wu, Zf., Zhong, J., Ye, Cx., Wu, Kg. (2008). An Enhanced Swarm Intelligence Clustering-Based RBF Neural Network Detection Classifier. In: Huang, DS., Wunsch, D.C., Levine, D.S., Jo, KH. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence. ICIC 2008. Lecture Notes in Computer Science(), vol 5227. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85984-0_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85984-0_63

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85983-3

  • Online ISBN: 978-3-540-85984-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics