Abstract
In this paper we define a new circularity measure. The new measure is easy to compute and, being area based, is robust with respect to noise. It ranges over (0,1] and gives the measured circularity equal to 1 if and only if the measured shape is a circle. The new measure is invariant with respect to translations, rotations and scaling.
Chapter PDF
Similar content being viewed by others
Keywords
References
Di Ruberto, C., Dempster, A.: Circularity measures based on mathematical Morphology. Electronics Letters 38, 1691–1693 (2000)
Kim, C.E., Anderson, T.A.: Digital disks and a digital compactness measure. In: 16th Annual ACM symposium on Theory of STOC, pp. 117–124. ACM Press, New York (1984)
Lee, D.R., Sallee, T.: A method of measuring shape. Geographical Review 60, 555–563 (1970)
Proffitt, D.: The measurement of circularity and ellipticity on a digital grid. Patt. Rec. 15, 383–387 (1982)
Flusser, J., Suk, T.: Pattern recognition by affine moment invariants. Patt. Rec. 26, 167–174 (1993)
Hu., M.: Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 8, 179–187 (1962)
Jain, R., Kasturi, R., Schunck, B.G.: Machine Vision. McGraw-Hill, New York (1995)
Jiang, X.Y., Bunke, H.: Simple and fast computation of moments. Patt. Rec. 24, 801–806 (1991)
Rahtu, E., Salo, M., Heikkila, J.: A new convexity measure based on a probabilistic interpretation of images. IEEE Trans. Patt. Anal. Mach. Intell. 28, 1501–1512 (2006)
Rosin, P.L.: Measuring shape: ellipticity, rectangularity, and triangularity. Machine Vision and Applications 14, 172–184 (2003)
Rosin, P.L.: Measuring sigmoidality. Patt. Rec. 37, 1735–1744 (2004)
Stojmenović, M., Nayak, A.: Shape based circularity measures of planar point sets. In: IEEE International Conference on Signal Processing and Communications, pp. 1279–1282. IEEE Press, New York (2007)
Stojmenović, M., Žunić, J.: Measuring Elongation from Shape Boundary. Journal Mathematical Imaging and Vision 30, 73–85 (2008)
Tsai, W.H., Chou, S.L.: Detection of generalized principal axes in rotationally symmetric shapes. Patt. Rec. 24, 95–104 (1991)
Xu, D., Li, H.: Geometric moment invariants. Patt. Rec. 41, 240–249 (2008)
Žunić, J., Rosin, P.L.: Rectilinearity Measurements for Polygons. IEEE Trans. on Patt. Anal. and Mach. Intell. 25, 1193–1200 (2003)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Žunić, J., Hirota, K. (2008). Measuring Shape Circularity. In: Ruiz-Shulcloper, J., Kropatsch, W.G. (eds) Progress in Pattern Recognition, Image Analysis and Applications. CIARP 2008. Lecture Notes in Computer Science, vol 5197. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85920-8_12
Download citation
DOI: https://doi.org/10.1007/978-3-540-85920-8_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85919-2
Online ISBN: 978-3-540-85920-8
eBook Packages: Computer ScienceComputer Science (R0)