Nothing Special   »   [go: up one dir, main page]

Skip to main content

On the Number of Linearly Independent Equations Generated by XL

  • Conference paper
Sequences and Their Applications - SETA 2008 (SETA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5203))

Included in the following conference series:

Abstract

Solving multivariate polynomial equation systems has been the focus of much attention in cryptography in the last years. Since most ciphers can be represented as a system of such equations, the problem of breaking a cipher naturally reduces to the task of solving them. Several papers have appeared on a strategy known as eXtended Linearization (XL) with a view to assessing its complexity. However, its efficiency seems to have been overestimated and its behaviour has yet to be fully understood. Our aim in this paper is to fill in some of these gaps in our knowledge of XL. In particular, by examining how dependencies arise from multiplication by monomials, we give a formula from which the efficiency of XL can be deduced for multivariate polynomial equations over \(\mathbb{F}_2.\) This confirms rigorously a result arrived at by Yang and Chen by a completely different approach. The formula was verified empirically by investigating huge amounts of random equation systems with varying degree, number of variables and number of equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Courtois, N., Pieprzyk, J.: Cryptanalysis of Block Ciphers with Overdefined Systems of Equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 267–287. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Courtois, N.: Higher Order Correlation Attacks,XL Algorithm and Cryptanalysis of Toyocrypt. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 182–199. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Courtois, N.: Fast Algebraic Attacks on Stream Ciphers with Linear Feedback. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 176–194. Springer, Heidelberg (2003)

    Google Scholar 

  4. Courtois, N., Meier, W.: Algebraic Attacks on Stream Ciphers with Linear Feedback. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 345–359. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Yang, B.-Y., Chen, J.-M.: Theoretical Analysis of XL over Small Fields. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 277–288. Springer, Heidelberg (2004)

    Google Scholar 

  6. Yang, B.-Y., Chen, J.-M., Courtois, N.: On Asymptotic Security Estimates in XL and Gröbner Bases-Related Algebraic Cryptanalysis. In: López, J., Qing, S., Okamoto, E. (eds.) ICICS 2004. LNCS, vol. 3269, pp. 401–413. Springer, Heidelberg (2004)

    Google Scholar 

  7. Yang, B.-Y., Chen, J.-M.: All in the XL Family: Theory and Practice. In: Park, C.-s., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 67–86. Springer, Heidelberg (2005)

    Google Scholar 

  8. Anderson, I.: A First Course in Combinatorial Mathematics, Theorem 2.6, 2nd edn., p. 16. Oxford University Press, Oxford (1989)

    Google Scholar 

  9. van Lint, J.H., Wilson, R.M.: A Course in Combinatorics, Theorem 13.1, 2nd edn., p. 119. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  10. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient Algorithms for Solving Overdefined Systems of Multivariate Polynomial Equations. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  11. Courtois, N., Patarin, J.: About the XL Algorithm over GF(2). In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 141–157. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Ars, G., Faugre, J.C., Imai, H., Kawazoe, M., Sugita, M.: Comparison Between XL and Gröbner Basis Algorithms. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 338–353. Springer, Heidelberg (2004)

    Google Scholar 

  13. Moh, T.: On The Method of “XL” And Its Inefficiency to TTM, IACR eprint server (2001), http://eprint.iacr.org/2001/047

  14. Kipnis, A., Shamir, A.: Cryptanalysis of the HFE Public Key Cryptosystem by Relinearization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 19–30. Springer, Heidelberg (1999)

    Google Scholar 

  15. Macaulay, F.S.: On some formula in elimination. In: Proceedings of London Mathematical Society, pp. 3–27 (1902)

    Google Scholar 

  16. Bardet, M., Faugre, J.C., Salvy, B.: Complexity of Gröbner basis computation for Semi-regular Overdetermined sequences over F2, with solutions in F2 Rapport de recherche de l’INRIA, No. 5049 (2003)

    Google Scholar 

  17. Lazard, D.: Gröbner-Bases, Gaussian Elimination and Resolution of Systems of Algebraic Equations. In: van Hulzen, J.A. (ed.) EUROCAL 1983. LNCS, vol. 162, pp. 146–157. Springer, Heidelberg (1983)

    Google Scholar 

  18. Lazard, D.: Rèsolution des systémes d’équations algébriques. Theoretical Computer Science 15(1) (1981)

    Google Scholar 

  19. Rønjom, S., Helleseth, T.: The Linear Vector Space Spanned by the Nonlinear Filter Generator. In: Golomb, S.W., Gong, G., Helleseth, T., Song, H.-Y. (eds.) SSC 2007. LNCS, vol. 4893, pp. 169–183. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  20. Rønjom, S., Gong, G., Helleseth, T.: On attacks on filtering generators using linear subspace structures. In: Golomb, S.W., Gong, G., Helleseth, T., Song, H.-Y. (eds.) SSC 2007. LNCS, vol. 4893, pp. 204–217. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Solomon W. Golomb Matthew G. Parker Alexander Pott Arne Winterhof

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rønjom, S., Raddum, H. (2008). On the Number of Linearly Independent Equations Generated by XL. In: Golomb, S.W., Parker, M.G., Pott, A., Winterhof, A. (eds) Sequences and Their Applications - SETA 2008. SETA 2008. Lecture Notes in Computer Science, vol 5203. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85912-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85912-3_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85911-6

  • Online ISBN: 978-3-540-85912-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics