Abstract
Solving multivariate polynomial equation systems has been the focus of much attention in cryptography in the last years. Since most ciphers can be represented as a system of such equations, the problem of breaking a cipher naturally reduces to the task of solving them. Several papers have appeared on a strategy known as eXtended Linearization (XL) with a view to assessing its complexity. However, its efficiency seems to have been overestimated and its behaviour has yet to be fully understood. Our aim in this paper is to fill in some of these gaps in our knowledge of XL. In particular, by examining how dependencies arise from multiplication by monomials, we give a formula from which the efficiency of XL can be deduced for multivariate polynomial equations over \(\mathbb{F}_2.\) This confirms rigorously a result arrived at by Yang and Chen by a completely different approach. The formula was verified empirically by investigating huge amounts of random equation systems with varying degree, number of variables and number of equations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Courtois, N., Pieprzyk, J.: Cryptanalysis of Block Ciphers with Overdefined Systems of Equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 267–287. Springer, Heidelberg (2002)
Courtois, N.: Higher Order Correlation Attacks,XL Algorithm and Cryptanalysis of Toyocrypt. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 182–199. Springer, Heidelberg (2003)
Courtois, N.: Fast Algebraic Attacks on Stream Ciphers with Linear Feedback. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 176–194. Springer, Heidelberg (2003)
Courtois, N., Meier, W.: Algebraic Attacks on Stream Ciphers with Linear Feedback. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 345–359. Springer, Heidelberg (2003)
Yang, B.-Y., Chen, J.-M.: Theoretical Analysis of XL over Small Fields. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 277–288. Springer, Heidelberg (2004)
Yang, B.-Y., Chen, J.-M., Courtois, N.: On Asymptotic Security Estimates in XL and Gröbner Bases-Related Algebraic Cryptanalysis. In: López, J., Qing, S., Okamoto, E. (eds.) ICICS 2004. LNCS, vol. 3269, pp. 401–413. Springer, Heidelberg (2004)
Yang, B.-Y., Chen, J.-M.: All in the XL Family: Theory and Practice. In: Park, C.-s., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 67–86. Springer, Heidelberg (2005)
Anderson, I.: A First Course in Combinatorial Mathematics, Theorem 2.6, 2nd edn., p. 16. Oxford University Press, Oxford (1989)
van Lint, J.H., Wilson, R.M.: A Course in Combinatorics, Theorem 13.1, 2nd edn., p. 119. Cambridge University Press, Cambridge (2001)
Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient Algorithms for Solving Overdefined Systems of Multivariate Polynomial Equations. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000)
Courtois, N., Patarin, J.: About the XL Algorithm over GF(2). In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 141–157. Springer, Heidelberg (2003)
Ars, G., Faugre, J.C., Imai, H., Kawazoe, M., Sugita, M.: Comparison Between XL and Gröbner Basis Algorithms. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 338–353. Springer, Heidelberg (2004)
Moh, T.: On The Method of “XL” And Its Inefficiency to TTM, IACR eprint server (2001), http://eprint.iacr.org/2001/047
Kipnis, A., Shamir, A.: Cryptanalysis of the HFE Public Key Cryptosystem by Relinearization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 19–30. Springer, Heidelberg (1999)
Macaulay, F.S.: On some formula in elimination. In: Proceedings of London Mathematical Society, pp. 3–27 (1902)
Bardet, M., Faugre, J.C., Salvy, B.: Complexity of Gröbner basis computation for Semi-regular Overdetermined sequences over F2, with solutions in F2 Rapport de recherche de l’INRIA, No. 5049 (2003)
Lazard, D.: Gröbner-Bases, Gaussian Elimination and Resolution of Systems of Algebraic Equations. In: van Hulzen, J.A. (ed.) EUROCAL 1983. LNCS, vol. 162, pp. 146–157. Springer, Heidelberg (1983)
Lazard, D.: Rèsolution des systémes d’équations algébriques. Theoretical Computer Science 15(1) (1981)
Rønjom, S., Helleseth, T.: The Linear Vector Space Spanned by the Nonlinear Filter Generator. In: Golomb, S.W., Gong, G., Helleseth, T., Song, H.-Y. (eds.) SSC 2007. LNCS, vol. 4893, pp. 169–183. Springer, Heidelberg (2007)
Rønjom, S., Gong, G., Helleseth, T.: On attacks on filtering generators using linear subspace structures. In: Golomb, S.W., Gong, G., Helleseth, T., Song, H.-Y. (eds.) SSC 2007. LNCS, vol. 4893, pp. 204–217. Springer, Heidelberg (2007)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rønjom, S., Raddum, H. (2008). On the Number of Linearly Independent Equations Generated by XL. In: Golomb, S.W., Parker, M.G., Pott, A., Winterhof, A. (eds) Sequences and Their Applications - SETA 2008. SETA 2008. Lecture Notes in Computer Science, vol 5203. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85912-3_22
Download citation
DOI: https://doi.org/10.1007/978-3-540-85912-3_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85911-6
Online ISBN: 978-3-540-85912-3
eBook Packages: Computer ScienceComputer Science (R0)