Abstract
We give an O(n + t) time algorithm to determine whether an NFA with n states and t transitions accepts a language of polynomial or exponential growth. Given a NFA accepting a language of polynomial growth, we can also determine the order of polynomial growth in O(n + t) time. We also give polynomial time algorithms to solve these problems for context-free grammars.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bell, J.: A gap result for the norms of semigroups of matrices. Linear Algebra Appl. 402, 101–110 (2005)
Bridson, M., Gilman, R.: Context-free languages of sub-exponential growth. J. Comput. System Sci. 64, 308–310 (2002)
Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)
Eigenwillig, A., Sharma, V., Yap, C.K.: Almost tight recursion tree bounds for the Descartes method. In: ISSAC 2006, pp. 71–78 (2006)
Giesbrecht, M., Storjohann, A.: Computing rational forms of integer matrices. J. Symbolic Comput. 34, 157–172 (2002)
Ginsburg, S.: The Mathematical Theory of Context-free Languages. McGraw-Hill, New York (1966)
Ginsburg, S., Spanier, E.: Bounded ALGOL-like languages. Trans. Amer. Math. Soc. 113, 333–368 (1964)
Ginsburg, S., Spanier, E.: Bounded regular sets. Proc. Amer. Math. Soc. 17, 1043–1049 (1966)
Ibarra, O., Ravikumar, B.: On sparseness, ambiguity and other decision problems for acceptors and transducers. In: Monien, B., Vidal-Naquet, G. (eds.) STACS 1986. LNCS, vol. 210, pp. 171–179. Springer, Heidelberg (1985)
Ilie, L., Rozenberg, G., Salomaa, A.: A characterization of poly-slender context-free languages. Theoret. Informatics Appl. 34, 77–86 (2000)
Incitti, R.: The growth function of context-free languages. Theoret. Comput. Sci. 225, 601–605 (2001)
Kaltofen, E., Villard, G.: On the complexity of computing determinants. Comput. Complex. 13, 91–130 (2004)
Karpinski, M., Rytter, W., Shinohara, A.: An efficient pattern-matching algorithm for strings with short descriptions. Nordic Journal of Computing 4, 172–186 (1997)
Latteux, M., Thierrin, G.: On bounded context-free languages. Elektron. Informationsverarb. Kybernet. 20, 3–8 (1984)
Lifshits, Y.: Solving classical string problems on compressed texts. In: CPM 2007, pp. 228–240 (2007)
Lyndon, R.C., Schützenberger, M.-P.: The equation a M = b N c P in a free group. Michigan Math. J. 9, 289–298 (1962)
Minc, H.: Nonnegative Matrices. Wiley, Chichester (1988)
Plandowski, W.: The Complexity of the Morphism Equivalence Problem for Context-Free Languages, PhD thesis
Raz, D.: Length considerations in context-free languages. Theoret. Comput. Sci. 183, 21–32 (1997)
Shur, A.M.: Combinatorial complexity of rational languages. Discr. Anal. and Oper. Research, Ser. 1 12(2), 78–99 (2005)
Shur, A.M.: Combinatorial complexity of regular languages. In: Hirsch, E.A., Razborov, A.A., Semenov, A., Slissenko, A. (eds.) Computer Science – Theory and Applications. LNCS, vol. 5010, pp. 289–301. Springer, Heidelberg (2008)
Szilard, A., Yu, S., Zhang, K., Shallit, J.: Characterizing regular languages with polynomial densities. In: Havel, I.M., Koubek, V. (eds.) MFCS 1992. LNCS, vol. 629, pp. 494–503. Springer, Heidelberg (1992)
Trofimov, V.I.: Growth functions of some classes of languages. Cybernetics 6, 9–12 (1981)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gawrychowski, P., Krieger, D., Rampersad, N., Shallit, J. (2008). Finding the Growth Rate of a Regular of Context-Free Language in Polynomial Time. In: Ito, M., Toyama, M. (eds) Developments in Language Theory. DLT 2008. Lecture Notes in Computer Science, vol 5257. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85780-8_27
Download citation
DOI: https://doi.org/10.1007/978-3-540-85780-8_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85779-2
Online ISBN: 978-3-540-85780-8
eBook Packages: Computer ScienceComputer Science (R0)