Nothing Special   »   [go: up one dir, main page]

Skip to main content

Derivation Tree Analysis for Accelerated Fixed-Point Computation

  • Conference paper
Developments in Language Theory (DLT 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5257))

Included in the following conference series:

Abstract

We show that for several classes of idempotent semirings the least fixed-point of a polynomial system of equations is equal to the least fixed-point of a linear system obtained by “linearizing” the polynomials of in a certain way. Our proofs rely on derivation tree analysis, a proof principle that combines methods from algebra, calculus, and formal language theory, and was first used in [5] to show that Newton’s method over commutative and idempotent semirings converges in a linear number of steps. Our results lead to efficient generic algorithms for computing the least fixed-point. We use these algorithms to derive several consequences, including an O(N 3) algorithm for computing the throughput of a context-free grammar (obtained by speeding up the O(N 4) algorithm of [2]), and a generalization of Courcelle’s result stating that the downward-closed image of a context-free language is regular [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abdulla, P.A., Bouajjani, A., Jonsson, B.: On-the-fly analysis of systems with unbounded, lossy FIFO channels. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 305–318. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  2. Caucal, D., Czyzowicz, J., Fraczak, W., Rytter, W.: Efficient computation of throughput values of context-free languages. In: Holub, J., Žďárek, J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 203–213. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Courcelle, B.: On constructing obstruction sets of words. EATCS Bulletin 44, 178–185 (1991)

    MATH  Google Scholar 

  4. Esparza, J., Kiefer, S., Luttenberger, M.: An extension of Newton’s method to ω-continuous semirings. In: Harju, T., Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 157–168. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Esparza, J., Kiefer, S., Luttenberger, M.: On fixed point equations over commutative semirings. In: STACS 2007. LNCS, vol. 4397, pp. 296–307. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Esparza, J., Kiefer, S., Luttenberger, M.: Derivation tree analysis for accelerated fixed-point computation. Technical report, Technische Universität München (2008)

    Google Scholar 

  7. Esparza, J., Kučera, A., Mayr, R.: Model checking probabilistic pushdown automata. Logical Methods in Computer Science (2006)

    Google Scholar 

  8. Etessami, K., Yannakakis, M.: Recursive Markov chains, stochastic grammars, and monotone systems of nonlinear equations. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 340–352. Springer, Heidelberg (2005)

    Google Scholar 

  9. Gawlitza, T., Seidl, H.: Precise fixpoint computation through strategy iteration. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 300–315. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Harris, T.E.: The Theory of Branching Processes. Springer, Heidelberg (1963)

    MATH  Google Scholar 

  11. Higman, G.: Ordering by divisibility in abstract algebras. Proc. London Math. Soc. 2 (1952)

    Google Scholar 

  12. Hopkins, M.W., Kozen, D.: Parikh’s theorem in commutative Kleene algebra. In: LICS 1999 (1999)

    Google Scholar 

  13. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  14. Reps, T., Schwoon, S., Jha, S., Melski, D.: Weighted pushdown systems and their application to interprocedural dataflow analysis. Science of Computer Programming 58(1–2), 206–263 (2005); Special Issue on the Static Analysis Symposium 2003

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Masami Ito Masafumi Toyama

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Esparza, J., Kiefer, S., Luttenberger, M. (2008). Derivation Tree Analysis for Accelerated Fixed-Point Computation. In: Ito, M., Toyama, M. (eds) Developments in Language Theory. DLT 2008. Lecture Notes in Computer Science, vol 5257. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85780-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85780-8_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85779-2

  • Online ISBN: 978-3-540-85780-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics