Nothing Special   »   [go: up one dir, main page]

Skip to main content

On a Generalization of Standard Episturmian Morphisms

  • Conference paper
Developments in Language Theory (DLT 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5257))

Included in the following conference series:

  • 701 Accesses

Abstract

In a recent paper with L. Q. Zamboni the authors introduced the class of ϑ-episturmian words, where ϑ is an involutory antimorphism of the free monoid A *. In this paper, we introduce and study ϑ-characteristic morphisms, that is, morphisms which map standard episturmian words into standard ϑ-episturmian words. They are a natural extension of standard episturmian morphisms. The main result of the paper is a characterization of these morphisms when they are injective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lothaire, M.: Combinatorics on Words. Addison-Wesley, Reading (1983)

    MATH  Google Scholar 

  2. Lothaire, M.: Algebraic Combinatorics on Words. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  3. Lothaire, M.: Applied Combinatorics on Words. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  4. Droubay, X., Justin, J., Pirillo, G.: Episturmian words and some constructions of de Luca and Rauzy. Theoretical Computer Science 255, 539–553 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Justin, J., Pirillo, G.: Episturmian words and episturmian morphisms. Theoretical Computer Science 276, 281–313 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fischler, S.: Palindromic prefixes and episturmian words. Journal of Combinatorial Theory, Series A 113, 1281–1304 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. de Luca, A., De Luca, A.: Pseudopalindrome closure operators in free monoids. Theoretical Computer Science 362, 282–300 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bucci, M., de Luca, A., De Luca, A., Zamboni, L.Q.: On some problems related to palindrome closure. Theoretical Informatics and Applications (to appear, 2008), doi:10.1051/ita:2007064

    Google Scholar 

  9. Bucci, M., de Luca, A., De Luca, A., Zamboni, L.Q.: On different generalizations of episturmian words. Theoretical Computer Science 393, 23–36 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bucci, M., de Luca, A., De Luca, A., Zamboni, L.Q.: On θ-episturmian words. European Journal of Combinatorics (to appear, 2008)

    Google Scholar 

  11. Bucci, M., de Luca, A., De Luca, A.: Characteristic morphisms of generalized episturmian words. Preprint n. 18, DMA “R. Caccioppoli” (2008)

    Google Scholar 

  12. Berstel, J., Perrin, D.: Theory of Codes. Academic Press, New York (1985)

    MATH  Google Scholar 

  13. de Luca, A.: Sturmian words: structure, combinatorics, and their arithmetics. Theoretical Computer Science 183, 45–82 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Justin, J.: Episturmian morphisms and a Galois theorem on continued fractions. Theoretical Informatics and Applications 39, 207–215 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Masami Ito Masafumi Toyama

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bucci, M., de Luca, A., De Luca, A. (2008). On a Generalization of Standard Episturmian Morphisms. In: Ito, M., Toyama, M. (eds) Developments in Language Theory. DLT 2008. Lecture Notes in Computer Science, vol 5257. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85780-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85780-8_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85779-2

  • Online ISBN: 978-3-540-85780-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics