Nothing Special   »   [go: up one dir, main page]

Skip to main content

Categorization of Web Users by Fuzzy Clustering

  • Conference paper
Knowledge-Based Intelligent Information and Engineering Systems (KES 2008)

Abstract

Categorization of users is a fundamental task in Web personalization. Fuzzy clustering is a valid approach to derive user categories by capturing similar user interests from web usage data available in log files. Usually, fuzzy clustering is based on the use of Euclidean metrics to evaluate similarity between user preferences. This can lead to user categories that do not capture the semantic information incorporated in the original Web usage data. To better capture similarity between users, in this paper we propose the use of a measure that is based on the evaluation of similarity between fuzzy sets. The proposed fuzzy measure is employed in a relational fuzzy clustering algorithm to discover clusters embedded in the Web usage data and derive categories modeling the preferences of similar users. An application example on usage data extracted from log files of a real Web site is reported and a comparison with the results obtained using the cosine measure is shown to demonstrate the effectiveness of the fuzzy similarity measure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bezdek, J.C.: Pattern recognition with fuzzy objective function algorithms. Plenum Press, New York (1981)

    MATH  Google Scholar 

  2. Castellano, G., Fanelli, A.M., Torsello, M.A.: Relational Fuzzy approach for Mining User Profiles. Lectures Notes in Computational Intelligence, pp. 175–179. WSEAS Press (2007)

    Google Scholar 

  3. Castellano, G., Fanelli, A.M., Torsello, M.A.: LODAP: A Log Data Preprocessor for mining Web browsing patterns. In: Proc. of The 6th WSEAS International Conference on Artificial Intelligence, Knowledge Engineering and Data Bases (AIKED 2007), Corfu Island, Greece (2007)

    Google Scholar 

  4. Facca, F.M., Lanzi, P.L.: Mining interesting knowledge from weblogs: a survey. Data and Knowledge Engineering 53, 225–241 (2005)

    Article  Google Scholar 

  5. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: Cluster Validity Methods: Part II. SIGMOD Record (2002)

    Google Scholar 

  6. Joshi, A., Joshi, K.: On mining Web access logs. In: ACM SIGMOID Workshop on Research issues in Data Mining and Knowledge discovery, pp. 63–69 (2000)

    Google Scholar 

  7. Mobasher, B., Cooley, R., Srivastava, J.: Automatic personalization based on Web usage mining. TR-99010, Department of Computer Science. DePaul University (1999)

    Google Scholar 

  8. Nasraoui, O., Frigui, H., Joshi, A., Krishnapuram, R.: Mining Web access log using relational competitive fuzzy clustering. In: Proc. of the Eight International Fuzzy System Association World Congress (1999)

    Google Scholar 

  9. Suryavanshi, B.S., Shiri, N., Mudur, S.P.: An efficient technique for mining usage profiles using Relational Fuzzy Subtractive Clustering. In: Proc. of WIRI 2005, Tokyo, Japan (2005)

    Google Scholar 

  10. Vakali, A., Pokorny, J., Dalamagas, T.: An Overview of Web Data Clustering Practices. In: Lindner, W., Mesiti, M., Türker, C., Tzitzikas, Y., Vakali, A.I. (eds.) EDBT 2004. LNCS, vol. 3268, pp. 597–606. Springer, Heidelberg (2004)

    Google Scholar 

  11. Wang, X., Abraham, A., Smith, K.A.: Intelligent web traffic mining and analysis. Journal of Network and Computer Applications 28, 147–165 (2005)

    Article  Google Scholar 

  12. Zhizhen, L., Pengfei, S.: Similarity measures on intuitionistic fuzzy sets. Pattern Recognition Letter 24, 2687–2693 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ignac Lovrek Robert J. Howlett Lakhmi C. Jain

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Castellano, G., Torsello, M.A. (2008). Categorization of Web Users by Fuzzy Clustering. In: Lovrek, I., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2008. Lecture Notes in Computer Science(), vol 5178. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85565-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85565-1_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85564-4

  • Online ISBN: 978-3-540-85565-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics