Nothing Special   »   [go: up one dir, main page]

Skip to main content

Abstract

We consider the variant of the minimum vertex cover problem in which we require that the cover induces a connected subgraph. We give new approximation results for this problem in dense graphs, in which either the minimum or the average degree is linear. In particular, we prove tight parameterized upper bounds on the approximation returned by Savage’s algorithm, and extend a vertex cover algorithm from Karpinski and Zelikovsky to the connected case. The new algorithm approximates the minimum connected vertex cover problem within a factor strictly less than 2 on all dense graphs. All these results are shown to be tight. Finally, we introduce the price of connectivity for the vertex cover problem, defined as the worst-case ratio between the sizes of a minimum connected vertex cover and a minimum vertex cover. We prove that the price of connectivity is bounded by 2/(1 + ε) in graphs with average degree εn, and give a family of near-tight examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Garey, M.R., Johnson, D.S.: The rectilinear steiner tree problem is NP complete. SIAM Journal of Applied Mathematics 32, 826–834 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  2. Savage, C.D.: Depth-first search and the vertex cover problem. Inf. Process. Lett. 14(5), 233–237 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  3. Fernau, H., Manlove, D.: Vertex and edge covers with clustering properties: Complexity and algorithms. In: Algorithms and Complexity in Durham 2006 - Proceedings of the Second ACiD Workshop, Durham, UK, 18-20 September 2006, pp. 69–84 (2006)

    Google Scholar 

  4. Escoffier, B., Gourvès, L., Monnot, J.: Complexity and approximation results for the connected vertex cover problem. In: Brandstädt, A., Kratsch, D., Müller, H. (eds.) WG 2007. LNCS, vol. 4769, pp. 202–213. Springer, Heidelberg (2007)

    Google Scholar 

  5. Fujito, T., Doi, T.: A 2-approximation NC algorithm for connected vertex cover and tree cover. Inf. Process. Lett. 90(2), 59–63 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Moser, H.: Exact algorithms for generalizations of vertex cover. Master’s thesis, Institut für Informatik, Friedrich-Schiller Universität Jena (2005)

    Google Scholar 

  7. Guo, J., Niedermeier, R., Wernicke, S.: Parameterized complexity of vertex cover variants. Theory Comput. Syst. 41(3), 501–520 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Mölle, D., Richter, S., Rossmanith, P.: Enumerate and expand: Improved algorithms for connected vertex cover and tree cover. Theory Comput. Syst. 43(2), 234–253 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Karpinski, M., Zelikovsky, A.: Approximating dense cases of covering problems. In: Pardalos, P., Du, D. (eds.) Proc. of the DIMACS Workshop on Network Design: Connectivity and Facilites Location. DIMACS series in Disc. Math. and Theor. Comp. Sci, vol. 40, pp. 169–178 (1997)

    Google Scholar 

  10. Ibaraki, T., Nagamochi, H.: An approximation of the minimum vertex cover in a graph. Japan J. Indust. Appl. Math. 16, 369–375 (1999)

    Article  MathSciNet  Google Scholar 

  11. Cardinal, J., Labbé, M., Langerman, S., Levy, E., Mélot, H.: A tight analysis of the maximal matching heuristic. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 701–709. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Imamura, T., Iwama, K.: Approximating vertex cover on dense graphs. In: Proc. of the 16th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 582–589 (2005)

    Google Scholar 

  13. Cardinal, J., Langerman, S., Levy, E.: Improved approximation bounds for edge dominating set in dense graphs. In: Erlebach, T., Kaklamanis, C. (eds.) WAOA 2006. LNCS, vol. 4368, pp. 108–120. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Karpinski, M.: Polynomial time approximation schemes for some dense instances of NP-hard optimization problems. Algorithmica 30(3), 386–397 (2001)

    MATH  MathSciNet  Google Scholar 

  15. Bar-Yehuda, R., Kehat, Z.: Approximating the dense set-cover problem. J. Comput. Syst. Sci. 69(4), 547–561 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Paul, S., Miller, R.E.: Locating faults in a systematic manner in a large heterogeneous network. In: Proc. IEEE INFOCOM 1995, The Conference on Computer Communications. Fourteenth Annual Joint Conference of the IEEE Computer and Communications Societies, pp. 522–529 (1995)

    Google Scholar 

  17. Grout, V.: Principles of cost minimisation in wireless networks. J. Heuristics 11(2), 115–133 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Wu, J., Lou, W., Dai, F.: Extended multipoint relays to determine connected dominating sets in MANETs. IEEE Trans. Computers 55(3), 334–347 (2006)

    Article  Google Scholar 

  19. Thai, M.T., F.W.,, Liu, D., Zhu, S., Du, D.: Connected dominating sets in wireless networks with different transmission ranges. IEEE Trans. Mob. Comput 6(7), 721–730 (2007)

    Article  Google Scholar 

  20. Mélot, H.: Facet Defining Inequalities among Graph Invariants: the system GraPHedron. Discrete Applied Mathematics (to appear, 2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ashish Goel Klaus Jansen José D. P. Rolim Ronitt Rubinfeld

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cardinal, J., Levy, E. (2008). Connected Vertex Covers in Dense Graphs. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds) Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2008 2008. Lecture Notes in Computer Science, vol 5171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85363-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85363-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85362-6

  • Online ISBN: 978-3-540-85363-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics