Nothing Special   »   [go: up one dir, main page]

Skip to main content

Abstract

It is known that if a 2-universal hash function H is applied to elements of a block source (X 1,...,X T ), where each item X i has enough min-entropy conditioned on the previous items, then the output distribution (H,H(X 1),...,H(X T )) will be “close” to the uniform distribution. We provide improved bounds on how much min-entropy per item is required for this to hold, both when we ask that the output be close to uniform in statistical distance and when we only ask that it be statistically close to a distribution with small collision probability. In both cases, we reduce the dependence of the min-entropy on the number T of items from 2logT in previous work to logT, which we show to be optimal. This leads to corresponding improvements to the recent results of Mitzenmacher and Vadhan (SODA ‘08) on the analysis of hashing-based algorithms and data structures when the data items come from a block source.

A full version of this paper can be found on [CV08].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Robert, J.-M.: How to reduce your enemy’s information (extended abstract). In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 468–476. Springer, Heidelberg (1986)

    Google Scholar 

  2. Broder, A.Z., Mitzenmacher, M.: Survey: Network applications of bloom filters: A survey. Internet Mathematics 1(4) (2003)

    Google Scholar 

  3. Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness and probabilistic communication complexity. SIAM J. Comput. 17(2), 230–261 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chung, K.-M., Vadhan, S.: Tight bounds for hashing block sources (2008), http://www.citebase.org/abstract?id=oai:arXiv.org:0806.1948

  5. Gibbs, A.L., Su, F.E.: On choosing and bounding probability metrics. International Statistical Review 70, 419 (2002)

    Article  MATH  Google Scholar 

  6. Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-way functions (extended abstracts). In: Proceedings of the Twenty First Annual ACM Symposium on Theory of Computing, Seattle, Washington, May 15–17, 1989, pp. 12–24 (1989)

    Google Scholar 

  7. Knuth, D.E.: The art of computer programming. Sorting and Searching, vol. 3. Addison-Wesley Longman Publishing Co., Inc, Boston (1998)

    Google Scholar 

  8. Mitzenmacher, M., Vadhan, S.: Why simple hash functions work: Exploiting the entropy in a data stream. In: Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2008), January 20–22, 2008, pp. 746–755 (2008)

    Google Scholar 

  9. Muthukrishnan, S.: Data streams: algorithms and applications. In: SODA, p. 413 (2003)

    Google Scholar 

  10. Nisan, N., Ta-Shma, A.: Extracting randomness: A survey and new constructions. J. Comput. Syst. Sci. 58(1), 148–173 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Nisan, N., Zuckerman, D.: Randomness is linear in space. Journal of Computer and System Sciences 52(1), 43–52 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Radhakrishnan, J., Ta-Shma, A.: Bounds for dispersers, extractors, and depth-two superconcentrators. SIAM Journal on Discrete Mathematics 13(1), 2–24 (2000) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  13. Reyzin, L.: A note on the statistical difference of small direct products. Technical Report BUCS-TR-2004-032, Boston University Computer Science Department (2004)

    Google Scholar 

  14. Shaltiel, R.: Recent developments in extractors. In: Paun, G., Rozenberg, G., Salomaa, A. (eds.) Current Trends in Theoretical Computer Science. Algorithms and Complexity, vol. 1. World Scientific, Singapore (2004)

    Google Scholar 

  15. Vadhan, S.: The unified theory of pseudorandomness. SIGACT News 38(3) (September 2007)

    Google Scholar 

  16. Zuckerman, D.: Simulating BPP using a general weak random source. Algorithmica 16(4/5), 367–391 (1996)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ashish Goel Klaus Jansen José D. P. Rolim Ronitt Rubinfeld

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chung, KM., Vadhan, S. (2008). Tight Bounds for Hashing Block Sources. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds) Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2008 2008. Lecture Notes in Computer Science, vol 5171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85363-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85363-3_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85362-6

  • Online ISBN: 978-3-540-85363-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics