Nothing Special   »   [go: up one dir, main page]

Skip to main content

Abstract

We study approximation algorithms, integrality gaps, and hardness of approximation, of two problems related to cycles of “small” length k in a given graph. The instance for these problems is a graph G = (V,E) and an integer k. The k -Cycle Transversal problem is to find a minimum edge subset of E that intersects every k-cycle. The k -Cycle-Free Subgraph problem is to find a maximum edge subset of E without k-cycles.

The 3-Cycle Transversal problem (covering all triangles) was studied by Krivelevich [Discrete Mathematics, 1995], where an LP-based 2-approximation algorithm was presented. The integrality gap of the underlying LP was posed as an open problem in the work of Krivelevich. We resolve this problem by showing a sequence of graphs with integrality gap approaching 2. In addition, we show that if 3-Cycle Transversal admits a (2 − ε)-approximation algorithm, then so does the Vertex-Cover problem, and thus improving the ratio 2 is unlikely. We also show that k -Cycle Transversal admits a (k − 1)-approximation algorithm, which extends the result of Krivelevich from k = 3 to any k. Based on this, for odd k we give an algorithm for k -Cycle-Free Subgraph with ratio \(\frac{k-1}{2k-3}=\frac{1}{2}+\frac{1}{4k-6}\); this improves over the trivial ratio of 1/2.

Our main result however is for the k -Cycle-Free Subgraph problem with even values of k. For any k = 2r, we give an \(\Omega\left(n^{-\frac{1}{r}+\frac{1}{r(2r-1)}-\varepsilon}\right)\)-approximation scheme with running time ε  − Ω(1/ε) poly(n). This improves over the ratio Ω(n − 1/r) that can be deduced from extremal graph theory. In particular, for k = 4 the improvement is from Ω(n − 1/2) to Ω(1/n  − 1/3 − ε).

Similar results are shown for the problem of covering cycles of length ≤ k or finding a maximum subgraph without cycles of length ≤ k.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N.: Bipartite subgraphs. Combinatorica 16, 301–311 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alon, N., Bollobás, B., Krivelevich, M., Sudakov, B.: Maximum cuts and judicious partitions in graphs without short cycles. J. of Comb. Th. B 88(2), 329–346 (2003)

    Article  MATH  Google Scholar 

  3. Alon, N., Yuster, R., Zwick, U.: Finding and counting given length cycles. Algorithmica 17(3), 209–223 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bondy, J.A., Simonovits, M.: Cycles of even lengths in graphs. J. Comb. Th. B 16, 97–105 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  5. Erdös, P.: Extremal problems in graph theory. In: Fiedler, M. (ed.) Theory of Graphs and Its Applications. Academic Press, New York (1965)

    Google Scholar 

  6. Erdös, P., Gallai, T., Tuza, Z.: Covering and independence in triangle structures. Discrete Mathematics 150, 89–101 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Feige, U., Langberg, M., Schechtman, G.: Graphs with tiny vector chromatic numbers and huge chromatic numbers. SIAM J. Comput. 33(6), 1338–1368 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Furedi, Z., Naor, A., Verstraëte, J.: On the Turan number of the hexagon. Advances in Mathematics 203(2), 476–496 (2006)

    Article  MathSciNet  Google Scholar 

  9. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42(6), 1115–1145 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hoory, S.: The size of bipartite graphs with a given girth. Journal of Combinatorial Theory Series B 86(2), 215–220 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Komlós, J.: Covering odd cycles. Combinatorica 17(3), 393–400 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Krivelevich, M.: On a conjecture of Tuza about packing and covering of triangles. Discrete Mathematics 142(1-3), 281–286 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kühn, D., Osthus, D.: Four-cycles in graphs without a given even cycle. Journal of Graph Theory 48(2), 147–156 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lam, T.: A result on 2k-cycle free bipartite graphs. Australasian Journal of Combinatorics 32, 163–170 (2005)

    MATH  MathSciNet  Google Scholar 

  15. Lam, T., Verstraëte, J.: A note on graphs without short even cycles. The Electronic Journal of Combinatorics 12(1,N5) (2005)

    Google Scholar 

  16. Lazebnik, F., Ustimenko, V.A., Woldar, A.J.: Polarities and 2k-cycle free graphs. Discrete Math. 197/198, 503–513 (1999)

    MathSciNet  Google Scholar 

  17. Naor, A., Verstraëte, J.: A note on bipartite graphs without 2k-cycles. Probability, Combinatorics and Computing 14(5-6), 845–849 (2005)

    Article  MATH  Google Scholar 

  18. Pevzner, P.A., Tang, H., Tesler, G.: De novo repeat classification and fragment assembly. Genome Research 14(9), 1786–1796 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ashish Goel Klaus Jansen José D. P. Rolim Ronitt Rubinfeld

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kortsarz, G., Langberg, M., Nutov, Z. (2008). Approximating Maximum Subgraphs without Short Cycles. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds) Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2008 2008. Lecture Notes in Computer Science, vol 5171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85363-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85363-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85362-6

  • Online ISBN: 978-3-540-85363-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics