Abstract
The extraction of a representative set of features has always been a challenging research topic in image analysis. This interest is even more important when dealing with 3D images. The huge size of these datasets together with the complexity of the tasks where they are needed demand new approaches to the feature extraction problem. The need of an automatic procedure is specially important in many forensic applications, including the reconstruction of 3D models. In this work we propose a new method to automatically extract a set of relevant features from points clouds acquired by a 3D range scanner. We present our results over five views of five skulls, one of them corresponding to a pathological case.
This work was partially supported by the Spain’s Ministerio de Educación y Ciencia (ref. TIN2006-00829) and by the Andalusian Dpto. de Innovación, Ciencia y Empresa (ref. TIC1619), both including EDRF fundings.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Gumhold, S., Wang, X., MacLeon, R.: Feature extraction from point clouds. In: Proc. 10th International Meshing Roundtable, pp. 293–305 (2001)
Pauly, M., Keiser, R., Gross, M.: Multi-scale feature extraction on point-sampled surfaces. Computer Graphics Forum 20(3), 385–392 (2001)
Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1(4), 321–331 (1988)
Lee, Y., Lee, S.: Geometric snakes for triangular meshes. Computer Graphics Forum. 21(3), 229–238 (2002)
Monga, O., Benayoun, S., Faugeras, O.D.: Using partial derivatives of 3D images to extract typical surface features. In: Proceedings of the IEEE Computer Vision and Pattern Recognition (CVPR 1992), Illinois (USA), pp. 354–359 (1992)
Subsol, G., Thirion, J.P., Ayache, N.: A scheme for automatically building three-dimensional morphometric anatomical atlases: application to a skull atlas. Medical Image Analysis 2(1), 37–60 (1998)
Santamaría, J., Cordón, O., Damas, S., Alemán, I., Botella, M.: A scatter search-based technique for pair-wise 3D range image registration in forensic anthropology. Soft Computing 11(9), 819–828 (2007)
Ballerini, L., Cordón, O., Damas, S., Santamaría, J., Alemán, I., Botella, M.: Identification by computer-aided photographic supra-projection: a survey. Technical Report AFE 2007-04, European Centre for Soft Computing (2007)
Bowyer, K.W., Chang, K., Flynn, P.: A survey of approaches and challenges in 3D and multi-modal 3D + 2D face recognition. Computer Vision and Image Understanding 101, 1–15 (2006)
Bäck, T., Fogel, D.B., Michalewicz, Z. (eds.): Handbook of evolutionary computation. IOP Publishing Ltd and Oxford University Press (1997)
Laguna, M., Martí, R.: Scatter search: methodology and implementations in C. Kluwer Academic Publishers, Dordrecht (2003)
Santamaría, J., Cordón, O., Damas, S.: Evolutionary approaches for automatic 3D modeling of skulls in forensic identification. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS, vol. 4448, pp. 415–422. Springer, Heidelberg (2007)
Calisti, M.: Ricostruzione 3D di teschi attraverso caratteristiche euristiche per applicazioni forensi. Master’s thesis, University of Florence (2008)
Yoshizawa, S., Belyaev, A., Seidel, H.: Fast and robust detection of crest lines on meshes. In: 2005 ACM Symp. on Solid and Physical Modeling, pp. 227–232 (2005)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ballerini, L., Calisti, M., Cordón, O., Damas, S., Santamaría, J. (2008). Automatic Feature Extraction from 3D Range Images of Skulls. In: Srihari, S.N., Franke, K. (eds) Computational Forensics. IWCF 2008. Lecture Notes in Computer Science, vol 5158. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85303-9_6
Download citation
DOI: https://doi.org/10.1007/978-3-540-85303-9_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85302-2
Online ISBN: 978-3-540-85303-9
eBook Packages: Computer ScienceComputer Science (R0)