Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 158))

  • 1399 Accesses

Summary

This chapter surveys existing research and main achievements of simulated annealing and genetic algorithms for triangulation based problems, such as generation of an optimal triangulation, improvement of a shape of triangles or tetrahedra and positions of their vertices, the use of triangulations for digital image representation, registration of 3D models and their textures, etc. Main features of the methods, their results and typical problems are pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Acikgoz, N., Bottaso, C.L.: Metric-driven mesh optimization using a local simulated annealing algorithm. International Journal for Numerical Methods in Engineering 71, 201–223 (2007)

    Article  MathSciNet  Google Scholar 

  2. Bartánus, M., Ferko, A., Mag, R., Niepel, L., Plachetka, T., Sikudová, E.: New heuristics for minimum weight triangulation. In: Proceedings from the 4th International Conference in Central Europe on Computer Graphics and Visualization 1996, pp. 31–40. University of West Bohemia, Pilsen (1996)

    Google Scholar 

  3. Bærentzen J.A.: Optimizing 3D triangulations to recapture sharp edges. IMM-Technical Report-2006-11 (2006)

    Google Scholar 

  4. Bobáková, G., Ferko, A., Niepel, L.: On minimum weight triangulation. In: Proceedings of the 10th International Conference Spring School of Computer Graphics, Bratislava, pp. 226–232 (1994)

    Google Scholar 

  5. Bottaso, C.L.: Anisotropic mesh adaptation by metric-driven optimization. International Journal for Numerical Methods in Engineering 60, 597–639 (2004)

    Article  MathSciNet  Google Scholar 

  6. Bremer, P.T., Hamann, B., Kreylos, O., Wolter, F.E.: Simplification of closed triangulated surfaces using simulated annealing. In: Lynch, T., Schumaker, L.L. (eds.) Mathematical methods in CAGD, pp. 1–8 (2001)

    Google Scholar 

  7. Capp, C., Julstrom, B.A.: A weight-coded genetic algorithm for the minimum weight triangulation problem. In: Proceedings of the 1998 ACM Symposium on Applied Computing, pp. 327–331. New York (1998)

    Google Scholar 

  8. Cazals, F., Giesen, J.: Delaunay Triangulation Based Surface Reconstruction. In: Boissonnat, J.-D., Teillaud, M. (eds.) Effective Computational Geometry for Curves and Surfaces, pp. 231–276. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Chen, K.C., Hsieh, I., Wang, C.A.: A genetic algorithm for minimum tetrahedralization of a convex polyhedron. In: Proceedings of the Canadian conference on computational geometry, Halifax, Nova Scotia, pp. 1–5 (2003)

    Google Scholar 

  10. Chen, Y.H., Wang, Y.Z.: Genetic algorithms for optimized re-triangulation in the context of reverse engineering. Computer-Aided Design 31, 261–271 (1999)

    Article  MATH  Google Scholar 

  11. Chetverikov, D., Stepanov, D., Krsek, P.: Robust Euclidean alignment of 3D point sets: the Trimmed Iterative Closest Point algorithm. Image and Vision Computing 23, 299–309 (2005)

    Article  Google Scholar 

  12. Chetverikov, D., Jankó, Z., Lomonosov, E., Ekárt, A.: Creating photorealistic models by data fusion with genetic algorithms. In: A chapter of the edited volume Soft Computing in Image Processing: Recent Advances. Studies in Fuzziness and Soft Computing, vol. 210, pp. 239–266. Springer, Heidelberg (2007)

    Google Scholar 

  13. Cignoni, P., Montani, C., Scopigno, R.: A merge-first divide & conquer algorithm for Ed Delaunay triangulations, Internal Rep. C92/16, CNUCE/CNR, Pisa, Italy (1992)

    Google Scholar 

  14. Cooper, O., Campbell, N., Gibson, D.: Automatic augmentation and meshing of sparse 3D scene structure. In: Proceedings of the 7th IEEE workshop on applications of computer vision, pp. 287–293, Breckenridge (2005)

    Google Scholar 

  15. Eppstein, D., Paterson, M.S., Yao, F.: On nearest-neighbor graphs. Discrete and Computational Geometry 17(3), 263–282 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Goffe, W.L., Ferrier, G.D., Rogers, J.: Global optimization of statistical functions with simulated annealing. Journal of Econometrics 60, 65–100 (1994)

    Article  MATH  Google Scholar 

  17. Goldberg, P.D.: Genetic algorithms in search, optimization and machine learning. Addison-Wesley Pub., Reading (1989)

    MATH  Google Scholar 

  18. Holder, M., Karr, C.L.: Quadrilateral mesh smoothing using a steady state genetic algorithm. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 2400–2401. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  19. Jankó, Z., Chetverikov, D., Ekárt, A.: Using genetic algorithms in computer vision: Registering images to 3D surface model. Acta Cybernetica 18, 193–212 (2007)

    MATH  Google Scholar 

  20. Kallman, M.: Path planning in triangulations. In: Proceedings of the Workshop on Reasoning, Representation and Learning in Computer Games. In: International Joint Conference on Artficial Intelligence (IJCAI), Edinburg, Scotland, pp. 49–54 (2005)

    Google Scholar 

  21. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.O.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  22. Kolingerová, I.: Genetic optimization of the triangulation weight. In: Proceedings of the 2nd international conference Computer Graphics and Artificial Intelligence, Limoges, pp. 23–34 (1998)

    Google Scholar 

  23. Kolingerová, I.: Genetic approach to triangulations. In: Proceedings of the 4th international conference Computer graphics and artificial intelligence, Limoges, pp. 11–23 (2000)

    Google Scholar 

  24. Kolingerová, I.: Probabilistic methods for triangulated models. In: Proceedings of the 8th international conference on Computer Graphics and Artificial Intelligence, Limoges, pp. 93–106 (2005)

    Google Scholar 

  25. Kolingerová, I., Ferko, A.: Multicriteria-optimized triangulations. The Visual Computer 17, 380–395 (2001)

    Article  MATH  Google Scholar 

  26. Kreylos, O., Hamann, B.: On simulated annealing and the construction of linear spline approximations for scattered data. IEEE Transactions on Visualization and Computer Graphics 7, 17–31 (2001)

    Article  Google Scholar 

  27. Lawson, C.L.: Software for C 1 Surface interpolation. In: Price, J.R. (ed.) Mathematical Sofware III, pp. 161–194. Academic Press, New York (2007)

    Google Scholar 

  28. Lehner, B., Umlauf, G., Hamann, B.: Image compression using data-dependent triangulations. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Paragios, N., Tanveer, S.-M., Ju, T., Liu, Z., Coquillart, S., Cruz-Neira, C., Müller, T., Malzbender, T. (eds.) ISVC 2007, Part I. LNCS, vol. 4841, pp. 351–362. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  29. Lomonosov, E., Chetverikov, D., Ekárt, A.: Pre-registration of arbitrarily oriented 3D surfaces using a genetic algorithm, Pattern Recognition Letters. Special Issue on Evolutionary Computer Vision and Image Understanding 27, 1201–1208 (2006)

    Google Scholar 

  30. Mallampati, D.R., Mutalik, P.P., Wainwright, R.L.: A parallel multi-phase implementation of simulated annealing for the travelling salesman problem. In: Proceedings of the 6th Distributed memory computing conference, pp. 488–491 (1991)

    Google Scholar 

  31. Manacher, K., Zobrist, A.L.: Neither the greedy nor the Delaunay triangulation of a planar point set approximates the optimal triangulation. Information Processing Letters 9(1), 31–34 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  32. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculation by fast computing machines. J. Chem. Phys. 21, 1087 (1953)

    Article  Google Scholar 

  33. Michalewitz, Z.: Genetic algorithms + data structures = Evolution programs. Springer, Heidelberg (1996)

    Google Scholar 

  34. Morris, D., Kanade, T.: Image-consistent surface triangulation, In: Proceedings of the IEEE conference on computer vision and pattern recognition, vol.1, pp. 332–338 (2000)

    Google Scholar 

  35. Mulzer, W., Rote, G.: Minimum Weight Trianglation is NP-hard. In: Proceedings of the 22nd Annual Symposium on Computational Geometry, Sedona, Association for Computing Machinery, pp. 1–10 (2006)

    Google Scholar 

  36. Mutalik, P.P., Knight, L.R., Blanton, J.L., Wainwright, R.L.: Solving combinatorial optimization problems using parallel simulated annealing and parallel genetic algorithms. In: Proceedings of the 1992 ACM/SIGAPP symposium on Applied computing: technological challenges of the 1990, pp. 1031–1038 (1992)

    Google Scholar 

  37. Prestifilippo, G., Sprave, J.: Optimal triangulation by means of evolutionary algorithms. In: Genetic Algorithms in Engineering Systems: Innovations and Applications, GALESIA 1997, pp. 492–497 (1997)

    Google Scholar 

  38. Rila, L., Constantinides, A.G.: Image coding using data-dependent triangulation. In: Digital Signal Processing Proceedings, vol.2, pp. 531–534 (1997)

    Google Scholar 

  39. Renner, G., Ekárt, A.: Genetic algorithms in computer aided design. Computer-Aided Design 35, 709–726 (2003)

    Article  Google Scholar 

  40. Schumaker, L.L.: Computing optimal triangulations using simulated annealing. Computer Aided Geometric Design 10, 329–345 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  41. Sen, S., Zheng, S.: Near-optimal triangulation of a point set by simulated annealing. In: Symposium on Applied Computing, pp. 1000–1008 (1992)

    Google Scholar 

  42. Seneviratne, L.D., Ko, W.-S., Earles, S.W.E.: Triangulation-based path planning for a mobile robot. In: Journal Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Professional Engineering Publishing, vol. 211(5), pp. 365–371 (1997)

    Google Scholar 

  43. Shikhare, D., Gopalsamy, S., Modur, S.P.: A two phase technique for optimal tessellation of complex geometric models. In: 8th International conference on engineering computer graphics and descriptive geometry (1998)

    Google Scholar 

  44. Toussaint, G.T.: The relative neighbourhood graph of a finite planar set. Pattern Recognition 12, 261–268 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  45. Vigo, M., Pla, N., Cotrina, J.: Regular triangulations of dynamic sets of points. Computer Aided Geometric Design 19(2), 127–149 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  46. Wagner, T., Michelitsch, T., Sacharow, A.: On the design of optimisers for surface reconstruction. In: Genetic and Evolutionary Commputation Conference (GECCO 2007), pp. 2195–2202 (2007)

    Google Scholar 

  47. Weinert, K.: Optimal surface reconstruction from digitized point data using CI methods. Technical Report CI5 /97, SFB 531, University of Dortmund (1997)

    Google Scholar 

  48. Wu, Y., Wainwright, R.L.: Near-optimal triangulation of a point set using genetic algorithms. In: Proceedings of the 7th Oklahoma symposium on AI, pp. 122–131 (1993)

    Google Scholar 

  49. Yu, X., Morse, B.S., Sederberg, T.W.: Image Reconstruction Using Data-Dependent Triangulation. IEEE Computer Graphics and Applications 21(3), 62–68 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kolingerová, I. (2009). Simulated Annealing and Genetic Algorithms in Quest of Optimal Triangulations. In: Gavrilova, M.L. (eds) Generalized Voronoi Diagram: A Geometry-Based Approach to Computational Intelligence. Studies in Computational Intelligence, vol 158. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85126-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85126-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85125-7

  • Online ISBN: 978-3-540-85126-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics