Nothing Special   »   [go: up one dir, main page]

Skip to main content

Development of an Agreement Metric Based Upon the RAND Index for the Evaluation of Dimensionality Reduction Techniques, with Applications to Mapping Customer Data

  • Conference paper
Machine Learning and Data Mining in Pattern Recognition (MLDM 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4571))

Abstract

We develop a metric ψ, based upon the RAND index, for the comparison and evaluation of dimensionality reduction techniques. This metric is designed to test the preservation of neighborhood structure in derived lower dimensional configurations. We use a customer information data set to show how ψ can be used to compare dimensionality reduction methods, tune method parameters, and choose solutions when methods have a local optimum problem. We show that ψ is highly negatively correlated with an alienation coefficient K that is designed to test the recovery of relative distances. In general a method with a good value of ψ also has a good value of K. However the monotonic regression used by Nonmetric MDS produces solutions with good values of ψ, but poor values of K.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akkucuk, U.: Nonlinear mapping: Approaches based on optimizing an index of continuity and applying classical metric MDS on revised distances. PhD dissertation: Rutgers University (2004)

    Google Scholar 

  2. Akkucuk, U., Carroll, J.D.: PARAMAP vs. ISOMAP: A Comparison of Two Nonlinear Mapping Algorithms. Journal of Classification (forthcoming, 2007)

    Google Scholar 

  3. Akkucuk, U., Carroll, J.D.: Parametric Mapping (PARAMAP): An Approach to Nonlinear Mapping, 2006. In: Proceedings of the American Statistical Association, Section on Statistical Computing [CD-ROM], Alexandria, VA: American Statistical Association, pp. 1980–1986 (2006)

    Google Scholar 

  4. Andrews, R.L., Manrai, A.K.: MDS Maps for Product Attributes and Market Response: An Application to Scanner Panel Data. Marketing Science 18(4), 584–604 (1999)

    Google Scholar 

  5. Bijmolt, T.H.A., Wedel, M.: A comparison of Multidimensional Scaling Methods for Perceptual Mapping. Journal of Marketing Research 36(2), 277–285 (1999)

    Article  Google Scholar 

  6. Borg, I., Leutner, D.: Measuring the Similarity Between MDS Configurations. Multivariate Behavioral Research 20, 325–334 (1985)

    Article  Google Scholar 

  7. Buja, A., Swayne, D.F.: Visualization Methodology for Multidimensional Scaling. Journal of Classification 19, 7–43 (2004)

    Article  MathSciNet  Google Scholar 

  8. Carroll, J.D., Arabie, P.: Multidimensional scaling. In: Birnbaum, M.H. (ed.) Handbook of Perception and Cognition. Measurement, Judgment and Decision Making, vol. 3, pp. 179–250. Academic Press, San Diego, CA (1998)

    Google Scholar 

  9. Carroll, J.D., Green, P.E., Schaffer, C.M.: Interpoint Distance Comparisons in Correspondence Analysis. Journal of Marketing Research 23(3), 271–280 (1986)

    Article  Google Scholar 

  10. Carroll, J.D., Green, P.E.: Psychometric Methods in Marketing Research: Part II. Multidimensional Scaling, Journal of Marketing Research 34(2), 193–204 (1997)

    Google Scholar 

  11. Chen, L., Buja, A.: Local Multidimensional Scaling for Nonlinear Dimension Reduction, Graph Layout, and Proximity Analysis, Working Paper, University of Pennsylvania (2006)

    Google Scholar 

  12. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society B, 39, 1–38 (1977)

    MathSciNet  Google Scholar 

  13. DeSarbo, W.S., Kim, J., Choi, S.C., Spaulding, M.: A Gravity-Based Multidimensional Scaling Model for Deriving Spatial Structures Underlying Consumer Preference/Choice Judgements. Journal of Consumer Reseach 29(1), 91–100 (2002)

    Article  Google Scholar 

  14. DeSarbo, W.S., Hoffman, D.L.: Constructing MDS Joint Spaces from Binary Choice Data: A Multidimensional Unfolding Threshold Model for Marketing Research. Journal of Marketing Research 26(1), 40–54 (1987)

    Article  Google Scholar 

  15. DeSarbo, W.S., Manrai, A.K.: A new Multidimensional Scaling Methodology for the Analysis of Asymmetric Proximity Data in Marketing Research 11(1), 1–20 (1992)

    Google Scholar 

  16. Fodor, I.K.: A Survey of Dimension Reduction Techniques. LLNL technical report (2002)

    Google Scholar 

  17. Green, P.E.: Marketing Applications of MDS: Assessment and Outlook. Journal of Marketing 39, 24–31 (1975)

    Article  Google Scholar 

  18. Ham, J., Lee, D.D., Mika, S., Schölkopf, B.: A kernel view of the dimensionality reduction of manifolds. In: Greiner, R., Schuurmans, D. (eds.) Proceedings of the Twenty-First International Conference on Machine Learning, pp. 369–376 (2006)

    Google Scholar 

  19. Hubert, L., Arabie, P.: Comparing Partitions. Journal of Classification 2, 193–218 (1985)

    Article  Google Scholar 

  20. Kohonen, T.: Self-Organizing Map. Springer, New York (2001)

    Google Scholar 

  21. Kruskal, J.B.: Multidimensional scaling for optimizing a goodness of fit metric to a nonmetric hypothesis. Psychometrika 29, 1–27 (1964a)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kruskal, J.B.: Nonmetric Multidimensional scaling: A numerical method. Psychometrika 29, 115–129 (1964b)

    Article  MATH  MathSciNet  Google Scholar 

  23. Lafon, S., Lee, A.B.: Diffusion Maps and Coarse-Graining: A Unified Framework for Dimensionality Reduction. Graph Partitioning, and Data Set Paramaterization 28(9), 1393–1403 (2006)

    Google Scholar 

  24. Law, M.H.C., Jain, A.K.: Incremental Nonlinear Dimensionality Reduction by Manifold Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(3), 377–391 (2006)

    Article  Google Scholar 

  25. Levina, E.M., Bickel, P.J.: Maximum likelihood estimation of intrinsic dimension. In: Advances in Neural Information Processing Systems 17, MIT Press, Boston (2005)

    Google Scholar 

  26. Moore, W.L., Winer, R.S.: A Panel-Data Based Method for Merging Joint Space and Market Response Function Estimation. Marketing Science 6(1), 25–42 (1987)

    Google Scholar 

  27. Murtagh, F.: Correspondence Analysis and Data Coding with R and Java. Chapman and Hall/CRC Press, London (2005)

    Google Scholar 

  28. Neslin, S.A., Gupta, S., Kamakura, W., Lu, J., Mason, C.H.: Defection Detection: Measuring and Understanding the Predictive Accuracy of Customer Churn Models. Journal of Marketing Research 43(2), 204–211 (2006)

    Article  Google Scholar 

  29. Pettis, K., Bailey, T., Jain, A.K., Dubes, R.: An intrinsic dimensionality estimator from near-neighbor information. IEEE Transactions on Pattern Analysis and Machine Intelligence 1(1), 25–36 (1979)

    Article  MATH  Google Scholar 

  30. Rand, W.M.: Objective Criteria for the Evaluation of Clustering methods. Journal of the American Statistical Association 66, 846–850 (1971)

    Article  Google Scholar 

  31. Roweis, S.T., Saul, L.K.: Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  32. Sha, F., Saul, L.K.: Analysis and Extension of Spectral Methods for Nonlinear Dimensionality Reduction. In: Proceedings of the 22nd International Conference on Machine Learning, Bonn, Germany (2005)

    Google Scholar 

  33. Shepard, R.N.: The analysis of proximities: Multidimensional scaling with an unknown distance function, Parts I and II. Psychometrika. 27, pp. 125–140, pp. 219–246 (1962)

    Google Scholar 

  34. Shepard, R.N., Carroll, J.D.: Parametric representation of nonlinear data structures. In: Krishnaiah, P.R. (ed.) Multivariate Analysis, pp. 561–592. Academic Press, New York (1966)

    Google Scholar 

  35. Steen, J.E.M., Trijup, H.C.M.V., Ten Berge, J.M.F.: Perceptual Mapping Based on Idiosyncratic Sets of Attributes. Journal of Marketing Research 31(1), 15–27 (1994)

    Article  Google Scholar 

  36. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  37. Torgerson, W.S.: Multidimensional Scaling, I: theory and method. Psychometrika 17, 401–419 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  38. Torgerson, W.S.: Theory and Methods of Scaling, vol. 32. Wiley, New York (1958)

    Google Scholar 

  39. Weinberger, K.Q., Saul, L.K.: Unsupervised Learning of Image Manifolds by Semidefinite Programming. International Journal of Computer Vision 70(1), 77–90 (2006)

    Article  Google Scholar 

  40. Young, G., Householder, A.A.: Discussion of a Set of Points in Terms of their Mutual Distances. Psychometrika 3, 19–22 (1938)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Petra Perner

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

France, S., Carroll, D. (2007). Development of an Agreement Metric Based Upon the RAND Index for the Evaluation of Dimensionality Reduction Techniques, with Applications to Mapping Customer Data. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2007. Lecture Notes in Computer Science(), vol 4571. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73499-4_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73499-4_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73498-7

  • Online ISBN: 978-3-540-73499-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics