Nothing Special   »   [go: up one dir, main page]

Skip to main content

Optimization for MASK Scheme in Privacy Preserving Data Mining for Association Rules

  • Conference paper
Rough Sets and Intelligent Systems Paradigms (RSEISP 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4585))

Abstract

As a result of advances in technology, large amounts of data can be collected and stored automatically. Significant development of the Internet and easier access to it have contributed to collecting large amounts of information about users’ characteristics. Along with these changes, concerns about privacy of data have emerged. Several methods of preserving privacy for association rules mining have been proposed in literature: MASK scheme and its optimizations. This paper provides new solutions concerning efficiency for this scheme and considers different methods of distorting data using randomization techniques. Effectiveness of these solutions has been tested and presented in this paper.

Research has been supported by grant No 3 T11C 002 29 received from Polish Ministry of Education and Science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Bocca, J.B., Jarke, M., Zaniolo, C. (eds.) VLDB’94. Proceedings of 20th International Conference on Very Large Data Bases, Santiago de Chile, Chile, September 12-15, 1994, pp. 487–499. Morgan Kaufmann, San Francisco (1994)

    Google Scholar 

  2. Agrawal, S., Krishnan, V., Haritsa, J.R.: On addressing efficiency concerns in privacy preserving data mining. CoRR, cs.DB/0310038 (2003)

    Google Scholar 

  3. Atallah, M.J., Bertino, E., Elmagarmid, A.K., Ibrahim, M., Verykios, V.S.: Disclosure limitation of sensitive rules. In: Proceedings of the IEEE Knowledge and Data Engineering Workshop, pp. 45–52. IEEE Computer Society Press, Los Alamitos (1999)

    Google Scholar 

  4. Dasseni, E., Verykios, V.S., Elmagarmid, A.K., Bertino, E.: Hiding association rules by using confidence and support. In: Moskowitz, I.S. (ed.) Information Hiding. LNCS, vol. 2137, pp. 369–383. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Evfimievski, A., Srikant, R., Agrawal, R., Gehrke, J.: Privacy preserving mining of association rules. In: KDD ’02. Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 217–228. ACM Press, New York (2002)

    Chapter  Google Scholar 

  6. Kantarcioglu, M., Clifton, C.: Privacy-preserving distributed mining of association rules on horizontally partitioned data. In: DMKD (2002)

    Google Scholar 

  7. Oates, T., Jensen, D.: Large datasets lead to overly complex models: An explanation and a solution. In: KDD, pp. 294–298 (1998)

    Google Scholar 

  8. Rizvi, S., Haritsa, J.R.: Maintaining data privacy in association rule mining. In: VLDB, pp. 682–693. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  9. Saygin, Y., Verykios, V.S., Elmagarmid, A.K.: Privacy preserving association rule mining. In: RIDE, pp. 151–158 (2002)

    Google Scholar 

  10. Srikant, R., Agrawal, R.: Mining generalized association rules. In: Dayal, U., Gray, P.M.D., Nishio, S. (eds.) VLDB, pp. 407–419. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  11. Srikant, R., Agrawal, R.: Mining quantitative association rules in large relational tables. In: Jagadish, H.V., Mumick, I.S. (eds.) SIGMOD Conference, pp. 1–12. ACM Press, New York (1996)

    Google Scholar 

  12. Vaidya, J., Clifton, C.: Privacy preserving association rule mining in vertically partitioned data. In: KDD ’02. Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 639–644. ACM Press, New York (2002)

    Chapter  Google Scholar 

  13. Verykios, V.S., Bertino, E., Fovino, I.N., Provenza, L.P., Saygin, Y., Theodoridis, Y.: State-of-the-art in privacy preserving data mining. SIGMOD Record 33(1), 50–57 (2004)

    Article  Google Scholar 

  14. Xia, Y., Yang, Y., Chi, Y.: Mining association rules with non-uniform privacy concerns. In: Das, G., Liu, B., Yu, P.S. (eds.) DMKD, pp. 27–34. ACM Press, New York (2004)

    Chapter  Google Scholar 

  15. Yücel Saygin, C.C., Verykios, V.S.: Using unknowns to prevent discovery of association rules. SIGMOD Record 30(4), 45–54 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Marzena Kryszkiewicz James F. Peters Henryk Rybinski Andrzej Skowron

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Andruszkiewicz, P. (2007). Optimization for MASK Scheme in Privacy Preserving Data Mining for Association Rules. In: Kryszkiewicz, M., Peters, J.F., Rybinski, H., Skowron, A. (eds) Rough Sets and Intelligent Systems Paradigms. RSEISP 2007. Lecture Notes in Computer Science(), vol 4585. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73451-2_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73451-2_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73450-5

  • Online ISBN: 978-3-540-73451-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics