Nothing Special   »   [go: up one dir, main page]

Skip to main content

Recommender Agent Based on Social Network

  • Conference paper
New Trends in Applied Artificial Intelligence (IEA/AIE 2007)

Abstract

Conventional collaborative recommendation approaches neglect weak relationships even when they provide important information. This study applies the concepts of chance discovery and small worlds to recommendation systems. The trust (direct or indirect) relationships and product relationships among customers are to find candidates for collaboration. The purchasing quantities and feedback of customers are considered. The whole similarities are calculated based on the model, brand and type of purchased product.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Balabanovic, M., Shoham, Y.: Fab: Content-Based, Collaborative Recommendation. Communications of the ACM. 40(3), 66–72 (1997)

    Article  Google Scholar 

  2. Basu, C., Hirsh, H., Cohen, W.: Recommendation as Classification: Using Social and Content-Based Information in Recommendation. In: Proceedings of AAAI Symposium on Machine Learning in Information Access (1998)

    Google Scholar 

  3. Battiston, B., Walter, F.E., Schweitzer, F.: Impact of Trust on the Performance of a Recommendation System in a Social Network. In: W Proceedings of the Fifth International Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS’06). Hakodate, Japan (2006)

    Google Scholar 

  4. Goldberg, D., Nichols, D., Oki, B., Terry, D.: Using Collaborative Filtering to Weave an Information Tapestry. Communications of the ACM. 35(12), 61–70 (1992)

    Article  Google Scholar 

  5. Krulwich, B., Burkey, C.: Learning User Information Interests through Extraction of Semantically Significant Phrases. In: Proceedings of the AAAI Spring Symposium on Machine Learning in Information Access (1996)

    Google Scholar 

  6. Lang, K.: Newsweeder: Learning to Filter Nnetnews. In: Proceedings of the 12th International Conference on Machine Learning, pp. 331–339. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  7. Massa, P., Bhattacharjee, B.: Using Trust in Recommender Systems: An Experimental Analysis. In: Jensen, C., Poslad, S., Dimitrakos, T. (eds.) iTrust 2004. LNCS, vol. 2995, pp. 221–235. Springer, Heidelberg (2004)

    Google Scholar 

  8. Montaner, M., Lopez, B., de la Rosa, J.L.: Developing Trust in Recommender Agents. In: Falcone, R., Barber, S., Korba, L., Singh, M.P. (eds.) AAMAS 2002. LNCS (LNAI), vol. 2631, pp. 304–305. Springer, Heidelberg (2002)

    Google Scholar 

  9. Ohsawa, Y., McBurney, P.: Chance Discovery, Advanced Information Processing. Springer, Heidelberg (2003)

    Google Scholar 

  10. Pitsilis, G., Marshall, L.: Trust as a Key to Improving Recommendation System. In: Herrmann, P., Issarny, V., Shiu, S.C.K. (eds.) iTrust 2005. LNCS, vol. 3477, pp. 210–223. Springer, Heidelberg (2005)

    Google Scholar 

  11. Pitsilis, G., Marshall, L.: A Proposal for Trust-enabled P2P Recommendation Systems. Technical Report Series (CS-TR-910). University of Newcastle upon Tyne (2005)

    Google Scholar 

  12. O’Donovan, J., Smyth, B.: Trust in Recommender Systems. In: Proceedings of the 10th International Conference on Intelligent User Interfaces, pp. 167–174 (2005)

    Google Scholar 

  13. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: GroupLens: An Open Architecture for Collaborative Filtering of Netnews. In: Proceedings of the ACM Conference on Computer Supported Cooperative Work, pp. 175–186. ACM Press, New York (1994)

    Chapter  Google Scholar 

  14. Resnick, P., Varian, H.: Recommender Systems. Communications of the ACM 40(3), 56–58 (1997)

    Article  Google Scholar 

  15. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based Collaborative Filtering Recommendation Algorithms. In: Proceedings International WWW Conference, pp. 285–295 (2001)

    Google Scholar 

  16. Shardanand, U., Maes, P.: Social Information Filtering: Algorithms for Automating ’Word of Mouth’. In: Proceedings of the Conference on Human Factors in Computing Systems (CHI95), pp. 210–217 (1995)

    Google Scholar 

  17. Watts, D.J.: Six Degrees: The Science of a Connected Age. W.W. Norton & Company, New York (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hiroshi G. Okuno Moonis Ali

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Yang, HL., Yang, HF. (2007). Recommender Agent Based on Social Network. In: Okuno, H.G., Ali, M. (eds) New Trends in Applied Artificial Intelligence. IEA/AIE 2007. Lecture Notes in Computer Science(), vol 4570. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73325-6_94

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73325-6_94

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73322-5

  • Online ISBN: 978-3-540-73325-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics