Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Kernel Method for Measuring Structural Similarity Between XML Documents

  • Conference paper
New Trends in Applied Artificial Intelligence (IEA/AIE 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4570))

Abstract

Measuring structural similarity between XML documents has become a key component in various applications, including XML data mining, schema matching, web service discovery, among others. The paper presents a novel structural similarity measure between XML documents using kernel methods. Results on preliminary simulations show that this outperforms conventional ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Flesca, S., Manco, G., Masciari, E., Pontieri, L., Pugliese, A.: Fast detection of XML structural similarity. IEEE Transactions on Knowledge and Data Engineering 17(2) (February 2005)

    Google Scholar 

  2. Yang, J., Cheung, W., Chen, X.: Learning the kernel matrix for XML document clustering. In: Proceedings of the 2005 IEEE International Conference on e-Technology, e-Commerce and e-Service (EEE’05), Washington, DC, pp. 353–358. IEEE Computer Society Press, Los Alamitos (2005)

    Chapter  Google Scholar 

  3. Lee, J., Lee, K., Kim, W.: Preparations for semantics-based XML mining. In: Proceedings of IEEE International Conference on Data Mining (ICDM 2001), pp. 345–352 (2001)

    Google Scholar 

  4. Nierman, A., Jagadish, H.: Evaluating structural similarity in XML documents. In: Proceedings of the 5th International Workshop on the Web and Database (WebDB2002) (2002)

    Google Scholar 

  5. Shvaiko, P., Euzenat, J.: A survey of scham-based matching. In: Spaccapietra, S. (ed.) Journal on Data Semantics IV. LNCS, vol. 3730, pp. 14–171. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Jeong, B., Kulvatunyou, B., Ivezic, N., Cho, H., Jones, A.: Enhance reuse of standard e-business XML schema documents. In: Proceedings of International Workshop on Contexts and Ontology: Theory, Practice and Application (C&O’05) in the 20th National Conference on Artificial Intelligence (AAAI’05) (2005)

    Google Scholar 

  7. Ivezic, N., Kulvatunyou, B., Frechette, S., Jones, A., Cho, H., Jeong, B.: An interoperability testing study: Automotive inventory visibility and interoperability. In: Proceedings of e-Challenges (2004)

    Google Scholar 

  8. Muller, K., Mika, S., Ratsch, G., Tsuda, K., Schölkopf, B.: An introduction to kernel-based learning algorithms. IEEE Transactions on Neural Networks 12(2), 181–201 (2001)

    Article  Google Scholar 

  9. Kobayashi, M., Aono, M.: Vector Space Models for Search and Cluster Mining, pp. 103–122. Springer, New York (2003)

    Google Scholar 

  10. Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C.: Text classification using string kernels. Journal of Machine Learning Research 2, 419–444 (2002)

    Article  MATH  Google Scholar 

  11. Vert, J., Tsuda, K., Schölkopf, B.: A Primer on Kernel Methods, pp. 35–70. MIT Press, Cambridge (2004)

    Google Scholar 

  12. Saunders, C., Tschach, H., Shawe-Taylor, J.: Syllables and other string kernel extensions. In: Proceedings of the 19th International Conference on Machine Learning (ICML’02) (2002)

    Google Scholar 

  13. Cancedda, N., Gaussier, E., Goutte, C., Renders, J.: Word-sequence kernels. Journal of Machine Learning Research 3, 1059–1082 (2003)

    Article  MATH  Google Scholar 

  14. Jeong, B.: Machine Learning-based Semantic Similarity Measures to Assist Discovery and Reuse of Data Exchange XML Schemas. PhD thesis, Department of Industrial and Management Engineering, Pohang University of Science and Technology (2006)

    Google Scholar 

  15. Willett, P.: The porter stemming algorithm: Then and now. Electronic Library and Information Systems 40(3), 219–223 (2006)

    Article  Google Scholar 

  16. Zhang, Z., Li, R., Cao, S., Zhu, Y.: Similarity metric for XML documents. In: Proceedings of Workshop on Knowledge and Experience Management (FGWM2003) (2003)

    Google Scholar 

  17. Reynolds, A., Richards, G., Rayward-Smith, V.: The application of k-medoids and PAM to the clustering of rules. In: Yang, Z.R., Yin, H., Everson, R.M. (eds.) IDEAL 2004. LNCS, vol. 3177, pp. 173–178. Springer, Heidelberg (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hiroshi G. Okuno Moonis Ali

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Jeong, B., Lee, D., Cho, H., Kulvatunyou, B. (2007). A Kernel Method for Measuring Structural Similarity Between XML Documents. In: Okuno, H.G., Ali, M. (eds) New Trends in Applied Artificial Intelligence. IEA/AIE 2007. Lecture Notes in Computer Science(), vol 4570. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73325-6_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73325-6_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73322-5

  • Online ISBN: 978-3-540-73325-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics