Nothing Special   »   [go: up one dir, main page]

Skip to main content

Multi-agent System with Hybrid Intelligence Using Neural Network and Fuzzy Inference Techniques

  • Conference paper
New Trends in Applied Artificial Intelligence (IEA/AIE 2007)

Abstract

In this paper, a novel multi-agent control system incorporating hybrid intelligence and its physical testbed are presented. The physical testbed is equipped with a large number of embedded devices interconnected by three types of physical networks. It mimics a ubiquitous intelligent environment and allows real-time data collection and online system evaluation. Human control behaviours for different physical devices are analysed and classified into three categories. Physical devices are grouped based on their relevance and each group is assigned to a particular behaviour category. Each device group is independently modelled by either fuzzy inference or neural network agents according to the behaviour category. Comparative analysis shows that the proposed multi-agent control system with hybrid intelligence achieves significant improvement in control accuracy compared to other offline control systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Augusto, J.C., Nugent, C.D. (eds.): Designing Smart Homes. LNCS (LNAI), vol. 4008. Springer, Heidelberg (2006)

    Google Scholar 

  2. Ducatel, K., Bogdanowicz, M., Scapolo, F., Burgelman, J.-C.: Scenarios for Ambient Intelligence in 2010. Information Soc. Technol. Advisory Group (ISTAG), Inst. Prospective Technol. Studies (IPTS), Seville (2001)

    Google Scholar 

  3. Brooks, R.A.: The Intelligent Room Project. In: Second International Conference on Cognitive Technology, pp. 271–278 (1997)

    Google Scholar 

  4. Philips, B.A.: Metaglue: A Programming Language for Multi-Agent Systems. M.Eng. thesis, Massachusetts Institute of Technology, Cambridge, MA, USA (1999)

    Google Scholar 

  5. Gajos, K.: A Knowledge-Based Resource Management System For The Intelligent Room. M.Eng. thesis, Massachusetts Institute of Technology, Cambridge, MA, USA (2000)

    Google Scholar 

  6. Kulkarni, A.A.: A Reactive Behavioral System for the Intelligent Room. M.Eng. thesis, Massachusetts Institute of Technology, Cambridge, MA, USA (2002)

    Google Scholar 

  7. Rutishauser, U., Schaefer, A.: Adaptive Building Intelligence: A multi-Agent approach. Diploma thesis, University of Applied Science Rapperswil, Switzerland and Institute of Neuroinformatics, Swiss Federal Institute of Technology and University of Zurich, Switzerland (2002)

    Google Scholar 

  8. Doctor, F., Hagras, H., Callaghan, V.: A Fuzzy Embedded Agent-Based Approach for Realizing Ambient Intelligence in Intelligent Inhabited Environment. IEEE Trans. Sys. Man Cybern. 35(1), 55–65 (2005)

    Article  Google Scholar 

  9. Mozer, M.: The neural network house: An environment that adapts to its inhabitants. In: Proc. Amer. Assoc. Artif. Intell. Spring Symp. Intell. Environ. pp. 110–114 (1998)

    Google Scholar 

  10. Brumitt, B., Cadiz, J.J.: Let There Be Light! Comparing Interfaces for Homes of the Future. Microsoft Research, Redmond, WA 98052, MSR-TR-2000-92 (2000)

    Google Scholar 

  11. Yoshihama, S., Chou, P., Wong, D.: Managing Behavior of Intelligent Environments. In: Proc. of the First IEEE Int. Conf. on Pervasive Comp, pp. 330–337. IEEE Computer Society Press, Los Alamitos (2003)

    Chapter  Google Scholar 

  12. Tsai, C.F., Wu, H.C.: MASSIHN: A Multi-Agent Architecture for Intelligent Home Network Service. IEEE Trans. on Consumer Electronics 46, 505–514 (2002)

    Article  Google Scholar 

  13. Wang, K.I., Abdulla, W.H., Salcic, Z.: Distributed Embedded Intelligence Room with Multi-agent Cooperative Learning. In: Ma, J., Jin, H., Yang, L.T., Tsai, J.J.-P. (eds.) UIC 2006. LNCS, vol. 4159, pp. 147–156. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Echelon Corporation, LonWorks Overview (February 2006), http://www.echelon.com/solutions/overview/default.htm

  15. Wang, K.I., Abdulla, W.H., Salcic, Z.: Multi-agent fuzzy inference control system for intelligent environments using JADE. In: Proc. of 2nd IET Int. Conf. on Intel. Environ. pp. 285–294 (2006)

    Google Scholar 

  16. Wang, K.I., Abdulla, W.H., Salcic, Z.: A Multi-Agent System for Intelligent Environments using JADE. In: IEE Int. Workshop on Intell. Environ. pp. 86–91 (2005)

    Google Scholar 

  17. Kecman, V.: Learning and Soft Computing: Support Vector Machines. In: Neural Networks, and Fuzzy Logic Models, MIT Press, Cambridge (2001)

    Google Scholar 

  18. Castellano, G., Fanelli, A.M., Mencar, C.: Generation of interpretable fuzzy granules by a double clustering technique. Arch. Contr. Sci. 12(4), 397–410 (2002)

    Google Scholar 

  19. Wang, L.X.: The MW method completed: A flexible system approach to data minig. IEEE Trans. Fuzzy Syst. 11(6), 678–782 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hiroshi G. Okuno Moonis Ali

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Wang, K.IK., Abdulla, W.H., Salcic, Z. (2007). Multi-agent System with Hybrid Intelligence Using Neural Network and Fuzzy Inference Techniques. In: Okuno, H.G., Ali, M. (eds) New Trends in Applied Artificial Intelligence. IEA/AIE 2007. Lecture Notes in Computer Science(), vol 4570. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73325-6_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73325-6_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73322-5

  • Online ISBN: 978-3-540-73325-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics